MECHANICAL PROPERTIES OF FIBER- REINFORCED CEMENT-BASED COMPOSITES: EXPERIMENTAL STUDY ON COMPRESSIVE STRENGTH

Majidov S.R., Egamova M.T.

Tashkent University of Architecture and Civil Engineering
Faculty of Engineering,
Tashkent / Uzbekistan

Abstract

This study investigates the effect of fiber reinforcement on the compressive strength of cement-based composites. Glass fibers were added at 0%, 1%, 2%, and 3% by weight of cement. Laboratory experiments were conducted to evaluate compressive strength after 28 days of curing. The results revealed that the addition of 1% fiber significantly increased compressive strength by 31% compared to the control specimen. However, higher fiber contents (2–3%) resulted in slightly lower strength values, although they remained higher than the control. The findings highlight the potential of fiber-reinforced composites in construction applications where enhanced strength and crack resistance are required.

Keywords: Composite materials, fiber reinforcement, compressive strength, cement-based composites, construction materials.

МЕХАНИЧЕСКИЕ СВОЙСТВА ЦЕМЕНТНЫХ КОМПОЗИТОВ, АРМИРОВАННЫХ ВОЛОКНАМИ: ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ПРОЧНОСТИ НА СЖАТИЕ

Маджидов С.Р., Егамова М.Т.

Ташкентский университет архитектуры и строительства Факультет инженерии, Ташкент / Узбекистан

Аннотация

В данном исследовании изучается влияние армирования волокнами на прочность на сжатие цементных композитов. В качестве армирующего материала использовались стеклянные волокна в количестве 0%, 1%, 2% и 3% по массе цемента. Были проведены лабораторные эксперименты для оценки прочности на сжатие после 28 дней твердения. Результаты показали, что добавление 1% волокон значительно увеличивало прочность на сжатие на 31% по сравнению с контрольным образцом. Однако более высокое содержание волокон (2–3%) привело к немного более низким значениям прочности, хотя выше они оставались контрольного показателя. Полученные подчеркивают потенциал композитов, армированных волокнами, требуется строительных применений, где повышенная прочность И устойчивость к трещинам.

Ключевые слова: Композитные материалы, армирование волокнами, прочность на сжатие, цементные композиты, строительные материалы.

SEMENT KOMPOZITLARINING MEXANIK XUSUSIYATLARI, TOLALAR BILAN MUSTAHKAMLASH: SIQILISH MUSTAHKAMLIGINI EKSPERIMENTAL TADQIQOT

Madjidov S.R., Egamova M.T.

Toshkent arxitektura va qurilish universiteti
Injeneriya fakulteti
Toshkent / Oʻzbekiston

Annotaatsiya

Ushbu tadqiqotda tsement kompozitlarining siqilishdagi mustahkamligiga tolalar bilan mustahkamlashning ta'siri oʻrganildi. Mustahkamlovchi material sifatida tsement massasiga nisbatan 0%, 1%, 2% va 3% miqdorda shisha tolalar ishlatildi. 28 kunlik qotish davridan soʻng siqilish mustahkamligini baholash uchun laboratoriya tajribalari oʻtkazildi. Natijalar shuni koʻrsatdiki, 1% tolalar qoʻshilishi nazorat namunasi bilan solishtirganda siqilish mustahkamligini 31% ga oshirdi. Biroq 2–3%

tolalar qoʻshilganda mustahkamlik biroz pasaydi, lekin baribir nazorat namunasi darajasidan yuqori boʻlib qoldi. Olingan ma'lumotlar tolalar bilan mustahkamlangan kompozitlarning yuqori mustahkamlik va yoriqlarga chidamlilik talab qilinadigan qurilish sohalarida qoʻllash imkoniyatini ta'kidlaydi.

Kalit soʻzlar: kompozit materiallar, tolalar bilan mustahkamlash, siqilish mustahkamligi, tsement kompozitlari, qurilish materiallari.

Introduction

Composite materials are increasingly applied in construction due to their enhanced strength, durability, and resistance to environmental effects. Among these, fiber- reinforced cement-based composites have shown significant improvements in crack resistance and mechanical performance [1–3].

Previous research has demonstrated that the type and dosage of fibers strongly affect the mechanical properties of composites [4–6]. However, the optimal fiber content for achieving maximum compressive strength is still under investigation. This study provides an experimental evaluation of glass fiber reinforcement in cement-based composites.

Materials and Methods.

Materials.

- Cement: Ordinary Portland Cement (CEM I 42.5).
- Aggregates: Natural sand (0–5 mm).
- Fibers: Glass fibers (length 12 mm).
- Water-to-cement ratio: 0.45.

Sample Preparation.

Specimens were cast in $100\times100\times100$ mm molds with fiber dosages of 0%, 1%, 2%, and 3% (by weight of cement). Samples were cured in water at 20 ± 2 °C for 28 days.

Testing.

Compressive strength was measured according to ASTM C109 using a universal testing machine.

Results.

Compressive Strength.

The variation of compressive strength with fiber content is presented in Figure 1.

Fiber content (%)	Compressive strength	Change compared to
	(MPa)	control (%)
0	37.0	-
1	48.5	+31%
2	41.5	+12%
3	43.0	+16%

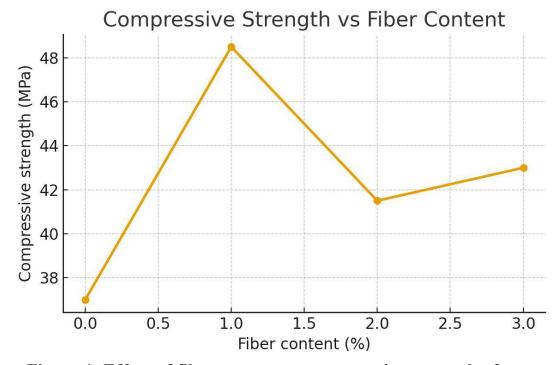


Figure 1. Effect of fiber content on compressive strength of cement-based composites.

Discussion.

The experimental results demonstrate that fiber reinforcement significantly improves compressive strength at low dosages. The optimal performance was

observed at 1% fiber content, where compressive strength increased by 31% compared to the control sample.

At higher fiber dosages (2–3%), strength values decreased slightly due to reduced workability and fiber agglomeration, but remained higher than the control. Similar findings were reported in studies by Li (2003) and Afroughsabet & Ozbakkaloglu (2015), confirming that moderate fiber contents yield the best performance.

Conclusion.

- The addition of glass fibers improved compressive strength of cement composites.
 - Optimal dosage was 1%, giving the highest increase (+31%).
- Higher dosages (2–3%) caused minor strength reductions but still outperformed the control mix.
- Fiber-reinforced cement composites are suitable for structural applications requiring enhanced mechanical properties.

References.

- 1. Li, V.C. (2003). On engineered cementitious composites: A review of the material and its applications. Journal of Advanced Concrete Technology, 1(3), 215–230.
- 2. Bentur, A., Mindess, S. (2007). Fibre Reinforced Cementitious Composites. CRC Press.
- 3. Afroughsabet, V., Ozbakkaloglu, T. (2015). Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 94, 73–82.
- 4. Zollo, R.F. (1997). Fiber-reinforced concrete: An overview after 30 years of development. Cement and Concrete Composites, 19(2), 107–122.
- 5. Islam, M.S., Gupta, S.D. (2018). Thermal properties of fiber reinforced composites for construction applications. Construction and Building Materials, 180, 692–701.

- 6. Singh, A., et al. (2021). Effect of glass fibers on the mechanical performance of cement-based composites. Journal of Building Engineering, 44, 103310.
- 7. Majidov S.R. Innovative Technology of Thermal Insulating Materials. Textbook. Tashkent: "FAN ZIYOSI" Publishing House, 2022. 287 p. ISBN/Reg. No.: 538-514, December 25, 2021.
- 8. Majidov S.R. Innovative Technology of Thermal Insulating Building Materials. Textbook. Tashkent: "FAN ZIYOSI" Publishing House, 2022. 290 p. Reg. No.: 538-528, December 25, 2021.
- 9. Rustamova, D. B., & Egamova, M. T. (2022). The oretical basis of increasing energy efficiency in residential buildings. *Journal of Advanced Scientific Research (ISSN: 0976-9595)*, *2*(1).
- 10. Egamova, M. T. (2022). Prospects for the development of energy-saving buildings in uzbekistan. Journal of Advanced Scientific Research (ISSN: 0976-9595), 2(1).
- 11. Rakhimov, R., Marupova, G., Egamova, M., Matyokubov, B., Rustamova, D., Mamadaliyev, X., & Razzaqov, N. (2025). Obtaining high-strength mastering mortars using ultra-disperse active mineral additives based on technogenic raw materials of Uzbekistan. In EPJ Web of Conferences (Vol. 318, p. 06001). EDP Sciences.
- 12. S. Majidov, M. Egamova The use of thermal insulation building materials in building components 2025/3 American Academic publishers Tom 5 ISSN: 2692-5206, Impact Factor: 12,23 1477-1479 Journal: https://www.academicpublishers.org/journals/index.php/ijai International Journal of Artificial Intelligence, 2025
- 13. S. Majidov, M. Egamova Distribution and Significance of Polymeric Thermal Insulation Materials 2025/4/18 Journal: "Views on World Architecture: Harmony and Proportion in Architecture" Tom 1 ISSN: 2692-5206, Impact Factor: 12,23 pages 582-Journal: https://www.academicpublishers.org/journals/index.php/ijai

14. S. Majidov, M. Egamova Main Properties of Thermal InsulatingConstruction Materials 2025/5/18 "Problems of Architecture and Construction" Tom1 ISSN 2901-5004 pages 202-203

Journal: https://www.academicpublishers.org/journals/index.php/ijai