Рахматжан Кадиров – доктор философии в сельскохозяйственных науках, доцент Андижанского института сельского хозяйства и агротехнологии, Узбекистан, Андижан.

КОНТРОЛЬ ИРРИГАЦИОННОЙ ЭРОЗИИ: МИНИМИЗАЦИЯ ЭРОЗИИ ПОЧВЫ ЧЕРЕЗ ЭФФЕКТИВНЫЕ МЕТОДЫ ОРОШЕНИЯ

Rakhmatjan Kadirov – PhD in Agricultural Sciences, Associate Professor at Andijan Institute of Agriculture and Agrotechnology, Uzbekistan, Andijan.

IRRIGATION EROSION CONTROL: MINIMIZING SOIL EROSION THROUGH EFFECTIVE IRRIGATION PRACTICES

Аннотация. В работе представлены результаты исследования процессов эрозии почвы при орошении. Полученные данные показывают, что полностью исключить смыв почвы практически невозможно. Однако задача заключается в подборе таких элементов орошения, которые минимизируют смыв в пределах допустимых норм. Это позволяет разработать эффективные методы и технику для нетрадиционных технологий орошения, таких как капельное и сплошное орошение, что снижает скорость воды, предотвращает эрозию и способствует сохранению почвы и её плодородия.

Ключевые слова: адыр, склон, уклон, борозды, рельеф, плодородие почвы, ирригационная эрозия

Abstract. The paper presents the results of a study on soil erosion processes during irrigation. The findings show that completely eliminating soil washout is practically impossible. However, the main task is to select irrigation components that minimize soil washout within acceptable limits. This allows for the development of effective methods and equipment for non-traditional irrigation technologies, such as drip and surface irrigation, which reduce water speed, prevent erosion, and contribute to soil conservation and fertility.

Keywords: adyr (hilly terrain), slope, gradient, furrows, relief, soil fertility, irrigation erosion, irrigation network, exponential law, irrigation pipeline, traditional irrigation technology.

Introduction

Soil erosion is one of the most significant challenges in agriculture, especially in areas where irrigation is essential for crop production. Irrigation-induced erosion occurs when water runoff removes the topsoil, leading to a decrease in soil fertility and productivity. This issue is particularly critical in regions with steep slopes and complex terrain. The goal of this study is to explore how irrigation practices can be optimized to minimize soil erosion while maintaining the efficiency of water use in agricultural production.

Methods

This study focuses on the assessment of irrigation practices and their impact on soil erosion in regions with sloping terrain. A series of experiments were conducted to evaluate different parameters of irrigation, including water flow rates, furrow length, irrigation duration, and the distribution of water along the furrow. The experimental area was selected in the Andijan region, where soils are prone to erosion under improper irrigation conditions.

Data were collected on soil erosion rates, the amount of water runoff, and the impact of irrigation parameters on soil degradation. Various types of irrigation techniques were tested, and their efficiency was compared in terms of minimizing water loss and soil erosion.

To achieve this, the study used an experimental approach where multiple irrigation parameters were varied to determine the optimal conditions for reducing erosion while maintaining the effectiveness of irrigation. Soil erosion rates were measured by assessing the amount of topsoil lost during the irrigation process. Additionally, measurements of water runoff and infiltration were recorded to understand how different irrigation practices impacted soil moisture distribution and erosion levels.

Results

The results of the study demonstrate that irrigation in sloped areas can lead to significant soil erosion if not managed correctly. Specifically, the findings indicate that the water flow rate at the beginning of irrigation and the length of the furrows play crucial roles in reducing runoff and erosion. The optimal water flow rates and furrow lengths were identified, which helped minimize soil erosion by ensuring a uniform distribution of water and reducing the surface runoff.

The experiments showed that the degree of erosion could be minimized by adjusting the water consumption parameters at the start of irrigation. By modifying the irrigation setup to account for the slope of the land, the soil erosion rate was significantly reduced, with lower amounts of topsoil being washed away. Additionally, the study found that a higher coefficient of uniformity in irrigation significantly contributed to minimizing the erosion process. This means that by applying water more evenly along the furrow, the likelihood of water runoff and erosion was reduced.

Moreover, the study observed that soil erosion rates varied depending on the specific parameters used, such as the duration of irrigation and the slope of the land. In areas with higher slopes, reducing the irrigation time and adjusting the water flow rate were particularly effective in controlling erosion. The optimal parameters for these conditions were identified, ensuring minimal water loss and maximum absorption by the soil.

Discussion

The findings from this study emphasize the importance of optimizing irrigation practices to mitigate the effects of erosion. Proper irrigation methods can significantly reduce water runoff, thus preventing the loss of valuable topsoil. In areas with steep slopes, it is essential to carefully regulate the amount of water applied during irrigation to prevent soil erosion. Over-irrigation and uneven water distribution are major contributors to erosion in such areas, as excess water can wash away the topsoil, leading to soil degradation.

The results also highlight the importance of technological innovations in irrigation systems. Automated systems that monitor and adjust water flow can further improve efficiency, ensuring that water is applied evenly and at the right rate. These systems can also help prevent over-irrigation, which is a major contributor to erosion in sloped areas. By incorporating these technologies, irrigation can become more precise and sustainable, significantly reducing its impact on soil erosion.

Additionally, the study suggests that further research into soil properties and irrigation practices is essential to understanding the full extent of the relationship between water usage and soil erosion. Soil characteristics, such as texture and organic matter content, play a critical role in how water interacts with the soil, which in turn influences erosion rates. Understanding these interactions can lead to the development of more targeted irrigation strategies that protect the soil while optimizing water use.

Conclusion

This study confirms that efficient irrigation practices are crucial for controlling soil erosion in agricultural regions with sloping terrain. By optimizing irrigation parameters, such as water flow rates, furrow length, and irrigation duration, the impact of erosion can be minimized. The research has shown that reducing the flow rate of water at the beginning of irrigation and adjusting the length of furrows are key factors in minimizing water runoff and soil erosion.

Additionally, the introduction of more advanced irrigation technologies, such as automated and mechanized systems, can further enhance the effectiveness of erosion control. These technologies not only improve irrigation efficiency but also contribute to more sustainable agricultural practices by reducing water waste and preventing soil degradation.

The results of this research are valuable for regions like Andijan, where soil erosion is a significant concern. By implementing the recommended irrigation practices, it is possible to protect the soil, preserve its fertility, and improve agricultural productivity. Further research and development of irrigation systems will

continue to play a critical role in ensuring sustainable agricultural practices and mitigating soil erosion in the future.

This study underscores the importance of continuous innovation in irrigation technologies and practices. By addressing the challenges posed by soil erosion through effective irrigation management, it is possible to maintain and improve the productivity of agricultural land while preserving soil health for future generations.

Bibliography

- 1. Авезбаев, С., Волков, С.Н. (2002). *Ер тузишнинг илмий асослари*. Тошкент: Тошкент университети.
 - 2. Авезбаев, С., Қорабоева, Т.М. (2005). Ер тузиш. Тошкент: Шарқ.
- 3. Абдурасулов, А.А. (2020). Ўзбекистонда бодомни бог типида плантацияларини барпо қилиш бўйича тавсиялар. Тошкент.
- 4. Узбекистан Республикаси Президенти. (2019). ПФ-5742-сон Фармони. *17* июнь 2019 йил.
- 5. Hassanova, O., Khodjimatov, A., Khommatova, K. (2020). The role of drought and anthropogenic factors in the organization of pistachio orchards in mountainous areas. *EPRA International Journal of Research and Development (IJRD)*, 6, 1–10.
- 6. Hassanova, O., Abduvasiev, A., Ghulomova, M. (2020). Importance of new method of irrigation of fruit seedlings in the foothills with snow and rainwater in times of water shortage. *ACADEMICIA: An International Multidisciplinary Research Journal*, 10(11), 1225–1235.
- 7. Hassanova, O., Isaev, S.H. (2019). *Использование дождевых и талых вод.* Москва: Спутник +.
- 8. Hassanova, O.A., Ghulomova, M.I. (2020). Тогли худудларида ёнгоқли мева богларини ташкил қилишда қургоқчилик ва антропоген омилларнинг аҳамияти. Хиндистон: EPRA International Journal of Research & Development (IJRD).
- 9. Hassanova, O.A. (2020). The role of drought and anthropogenic factors in the organization of nut orchards in mountainous regions. *Biological Journal of Forest and Water Management*, 8(19), 152-160.