МЕТОДИЧЕСКИЕ ОСНОВЫ ВНЕДРЕНИЯ ИНФОРМАЦИОННЫХ КОММУНИКАЦИОННЫХ ТЕХНОЛОГИЙ В ОБУЧЕНИИ ХИМИЧЕСКОЙ ТЕХНОЛОГИИ

Саидахмедова Нурхон Юсуповна

Доцент кафедры Химии Кокандского государственного педагогического института

Аннотация. В статье приведена методика формирования мышлений студентов на лабороторных занятиях по курсу химической технологии. Даётся теоретический анализ формирования химико-технологического мышления студентов.

Ключевые слова: анимация и мультимедиа, катализатор, практические и лабораторные занятия.

METHODOLOGICAL FOUNDATIONS OF THE INTRODUCTION OF INFORMATION AND COMMUNICATION TECHNOLOGIES IN TEACHING CHEMICAL TECHNOLOGIES

Saidakhmedova Nurkhon Yusupovna

Associate Professor of the Department of Chemistry of Kokand State Pedagogical Institute

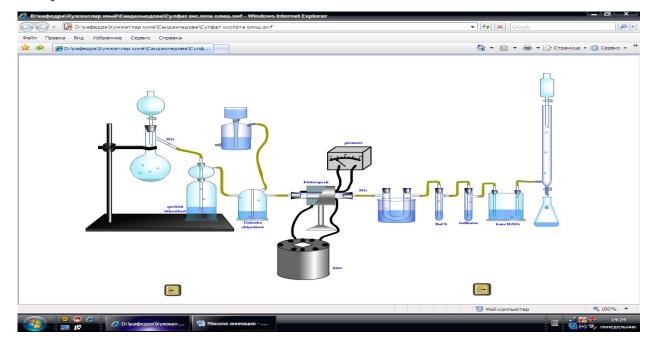
Annotation. This article discussed the methods of chemical-technology in the laboratorian lessons. Given the theory of analysis for the students of chemical-technology.

Keywords: animation and multimedia, catalyst, practical and laboratory classes.

Одной из основных задач в системе образования является создание анимационных и мультимедийных, электронных учебников и пособий на основе современных информационных технологий и их применение в образовательном процессе. Использование анимации и мультимедиа,

различных дидактических игр в процессе подготовки к практическим и лабораторным занятиям является особым навыком преподавания химии. Но любое средство обучения используется исходя из характера предмета. Поэтому создаваемые электронные образовательные ресурсы должны отвечать методическим требованиям.

В качестве совокупности методических требований можно получить следующее.


- соблюдение учебной программы;
- -помощь в решении проблемных ситуаций;
- -включить теоретические и практические аспекты предмета;
- помощь в формировании навыков и квалификации;
- -помочь выявить ошибки, допущенные в практических и лабораторных работах;
- -изображения в движении должны быть четкими и понятными;
- -способен в сжатые сроки изложить основные аспекты темы;
- -правильно излагать порядок выполнения лабораторных работ, меры предосторожности и меры безопасности;
- -отражение тем и междисциплинарность;
- -иметь возможность проверить выполненный отчет практической (лабораторной) работы.

Исходя из вышеизложенного, при подготовке движущихся электронных изображений для лабораторных занятий «Химическая технология» внимание следует уделять, во-первых, способу подготовки мультимедиа, а во-вторых, способу использования, подготовленного мультимедиа в учебном процессе. Известно, что рекомендации и проведение практических лабораторных занятий, раскрывающих сущность технологических процессов, являются серьезными задачами.

Сборка устройств и их последовательность в правильной системе требует соблюдения определенных закономерностей. С другой стороны,

это приводит к ограничению количества лабораторных рабочих мест, при этом требуется особое соблюдение правил техники безопасности. Мы сочли целесообразным объединить лабораторные работы с электронными вариантами для эффективного решения этих задач.

целях повышения знаний учащихся преподавания мы проводим занятия путем поиска новых форм и методов на занятиях по химико-технологии. Например, тема производства серной кислоты преподается с помощью информационных технологий, то есть По учебной анимашии. программе ПО химической технологии запланировано 24 лабораторных занятия, из которых 14 можно выполнить на практике, а 10 нельзя.

Необходимое оборудование и реактивы: колба, капельные воронки, стакан Тещенко, стакан-сушилка, газометр, электропечь, лоток, пирометр, U-образная трубка, пробирки, резиновые пробки, колонка, коническая колба, сульфит натрия (Na_2SO_3), соляная кислота (HCl), кислород 0,5л (O_2), хлорид бария ($BaCl_2$), индикатор, катализатор (CuO), концентрированная серная кислота (H_2SO_4).

В этой анимации диоксид серы (SO₂) производится из сульфита натрия (Na₂SO₃) из серы или соединений серы, а затем этот газ преобразуется в

триоксид серы (SO_3) . Для этого сульфитный ангидрид (SO_2) окисляют до сульфатного ангидрида (SO_3) в присутствии кислорода.

Катализатор (CuO₂) используется для ускорения этого процесса.

Серный ангидрид (SO₃) абсорбируется серной кислотой, избыток газа собирается через колонку в сборную колбу. Все это показано посредством анимации.

За счет использования данной анимации в образовательном процессе была достигнута высокая эффективность.

Использованная литература

- 1. N.Yu. Saidaxmedova Kimyoviy texnologiya. Darslik. "Farg'ona nashiryoti" 2021yil. 1-qism.
- 2. <u>МИКРО ГИДРОГЕНОЛИЗ ПИРИДИНА И ХИНОЛИНА НА</u> <u>АЛЮМИНОКОБАЛЬТМОЛИБДЕНОВОМ КАТАЛИЗАТОРЕ</u>

МЮ Исаков, НЮ Саидахмедова, МИ Саттарова - Ученый XXI века, 2016

3. Алюминий кобальтмолибден катализаторига пиридин ва хинолиннинг микрогидрогенолизи

МЮ Исаков, НЮ Саидахмедова, МИ Саттарова - Ученый XXI века ..., 2016

4. <u>ВЛИЯНИЕ ПРИРОДЫ ЕЛЮЕНТА НА РАЗДЕЛЕНИЕ ГЕТЕРООРГАНИЧЕСКИХ</u> СОЕДИНЕНИИ

М Исаков, Н Саидахмедова, Д Аъзамжонова - Актуальные научные исследования в современном ..., 2018

- 5. N.Yu. Saidaxmedova Tut bargi va ipak qurti mineral tarkibining qiyosiy tahlili//Tovarlar kimyosi hamda xalq tabobati muammolari va istiqbollari mavzusidagi X Xalqaro ilmiyamaliy konferensiya materiallari (Andijon, 2023, 14-15 sentabr) 260-261-bb.
- 6. N.Yu. Saidahmedova, D.B. Karimova, M.Yu. Isaqov Tut bargi, ipak qurti va chiqindisi tarkibidagi elementlarning qiyosiy tahlili. Halq tabobati plyus. Jurnal 4-son 2023y.228-233-bb
- 7. Meliboyeva, G. S. (2023). UMUMTA'LIM MUASSASALARIDA ZAMONAVIY KIMYO DARSLARINI TASHKILLASHGA OID METODIK TAVSIYALAR. O'ZBEKISTONDA FANLARARO INNOVATSIYALAR VA ILMIY TADQIQOTLAR JURNALI, 2(16), 137-141.
- 8. Meliboyeva, G. S., & Mamajonov, M. (2023). USE OF INTERACTIVE METHODS IN CHEMISTRY EDUCATION SYSTEM. *Open Access Repository*, *9*(2), 34-38.
- 9. Meliboyeva, G. S., and N. Xusanjonova. "KIMYONI O'QITISHDA INTERFAOL METODLARDAN FOYDALANISH." *Interpretation and researches* 1.1 (2023).
- 10. Minovarovna, Kazimova Nafisaxon, et al. "Dependence On The Professional Competence Of The Organizers Of Educational Processes." *Journal of Positive School Psychology* (2023): 1219-1223.