КОМПЛЕКСНАЯ ДИНАМИЧЕСКАЯ МОДЕЛЬ МНОГОКРИТЕРИАЛЬНОЙ ОПТИМИЗАЦИИ ПЕРЕВОЗОК В ЭКСТРЕМАЛЬНЫХ И ТРУДНОДОСТУПНЫХ УСЛОВИЯХ.

ТожибоевСухробхон Каршинский государственный технический университет ORCID: 0000-0001-5936-1837

COMPREHENSIVE DYNAMIC MODEL OF MULTI-CRITERIA OPTIMIZATION OF TRANSPORTATION IN EXTREME AND HARD-TOREACH CONDITIONS

Sukhrobkhon Tojiboev Karshi State Technical University ORCID: 0000-0001-5936-1837

Аннотация. В статье представлена многоуровневая динамическая модель транспортировки грузов в экстремальных и труднодоступных условиях, основанная на принципах многокритериальной оптимизации. Рассмотрены особенности функционирования транспортных систем при чрезвычайных ситуациях, разработан алгоритм выбора рациональной стратегии перевозок с учетом природно-климатических и социально-экономических факторов. Приведены результаты моделирования и предложены рекомендации по повышению эффективности транспортных операций в условиях неопределенности.

Abstract. The article presents a multi-level dynamic model for cargo transportation in extreme and hard-to-reach conditions, based on the principles of multi-criteria optimization. The specific features of transport system operation during emergency situations are examined, and an algorithm for selecting a rational transportation strategy is developed, taking into account natural—climatic and socio-economic factors. The results of the modeling are provided, and recommendations are proposed to improve the efficiency of transport operations under uncertainty.

Ключевые слова. Многокритериальная задача, динамическая модель, транспортировка грузов, труднодоступный район, экстремальная ситуация, вертолётный транспорт, ущерб, социально-экономический эффект.

Keywords: multi-criteria problem, dynamic model, cargo transportation, hard-to-reach area, extreme situation, helicopter transport, damage, socio-economic effect.

Ввеление

Последствия мощных землетрясений, техногенных аварий (включая событие на Чернобыльской АЭС) и токсичного загрязнения окружающей среды приводят к серьёзному моральному и материальному ущербу. В таких условиях взаимодействие различных видов транспорта помогает смягчить последствия чрезвычайных ситуаций [3].

Экстремальные условия характеризуются внезапностью, быстрым развитием событий, стрессовым состоянием населения, значительным экологическим и экономическим ущербом, разрушением инженерных систем, трудной проходимостью и цепным развитием событий, например наводнения после землетрясений.

последствий стихийных бедствий требует больших Ликвидация материальных затрат и применения различных видов транспорта, машин и механизмов в условиях неопределённости. В зоне чрезвычайной ситуации осуществляются спасательные работы, эвакуация населения, материальных ценностей и восстановительные мероприятия. Эти процессы напрямую связаны с транспортом, на который приходится основная часть трудовых и материальных затрат.

Поэтому планирование и управление взаимодействием разных видов транспорта в экстремальных условиях требует детального изучения структуры и особенностей функционирования транспортных систем. Исследование таких процессов представляет собой значимую научную задачу [2,3].

Методы исследования

В исследовании применён системный подход к анализу транспортных процессов в экстремальных условиях, а модель построена с использованием методов многокритериальной оптимизации и динамического программирования. В качестве основных критериев рассматриваются минимизация экологического ущерба, транспортных затрат и потерь грузов, что формализовано через систему ограничений и целевых функций.

В условиях землетрясений, наводнений и других ЧС работа транспорта изменяется поэтапно: сначала используется вертолётный транспорт для разведки, спасательных работ и доставки техники; после восстановления дорог включается автомобильный транспорт; грузы доставляются самолётами в ближайшие действующие узлы; далее, после восстановления путей, подключается железнодорожный транспорт.

Стратегия должна обеспечивать оперативное спасение людей и доставку жизненно важных грузов. По мере ликвидации последствий меняются критерии эффективности: скорость доставки, загрузка техники, производительность и

минимизация ущерба. Эти параметры рассматриваются как по отдельности, так и в сочетаниях.

Затраты на транспортировку, особенно вертолётами, зависят от климатических условий: в горных районах зимой они существенно выше, а в период март—сентябрь условия наиболее благоприятны. Потери грузов в труднодоступных районах учтены в модели.

Впервые предложена общая многокритериальная модель транспортировки грузов с учётом природно-климатических факторов и экстремальных ситуаций, а также укрупнённый алгоритм её решения [1–3].

Математическая модель такой задачи в общем случае имеет следующий вид:

Найти минимумефункции $F_{\text{\tiny 3}}$, $F_{\text{\tiny T}}$, и $F_{\text{\tiny \Pi}}$

$$F_{9} = \sum_{i=1}^{n} \sum_{j=1}^{m} e_{ij}(t, z) x_{ij}(t, z) \rightarrow min(1)$$

(суммарный экологический ущерб при перевозке грузов до потребителей взависимости природно-климатических условиях должен быт минимальным),

$$F_{m} = \sum_{i=1}^{n} \sum_{j=1}^{m} q_{ij}(t, z) x_{ij}(t, z) \to min(2)$$

(общий затрат при перевозке грузов в рассматриваемых условиях должен быть минимальным),

$$F_{m} = \sum_{i=1}^{n} \delta_{i}(t, z) + \sum_{i=1}^{m} \varepsilon_{i}(t, z) \rightarrow min(3)$$

(общий объем потеря грузов должен быть минимальным),при ограничениях

$$\sum_{i=1}^{n} \left[1 - a_{ij}(t, z) \right] x_{ij}(t, z) = b_{j}(t, z) - \varepsilon_{j}(t, z) , \quad j = 1, 2, ..., m(4)$$

(общий объем перевозок грузов от всех производителей до ј-го потребителя, должен быть равно объема потребностиј-го потребителя),

$$\sum_{i=1}^{m} [1 - a_{ij}(t, z)] x_{ij}(t, z) = a_{i}(t, z) - \delta_{i}(t, z), i = 1, 2, ..., n(5)$$

(общий объем перевозимых грузов по всему потребителей от і-го поставщика должен быть равно объему производства і-го производителя),

$$\sum_{i=1}^{n} \delta_{i}(t, \mathbf{z}) - \sum_{i=1}^{n} \varepsilon_{j}(t, \mathbf{z}) = \mathbf{i} \sum_{i=1}^{n} a_{i}(t, \mathbf{z}) - \sum_{j=1}^{m} b_{j}(t, \mathbf{z}) \mathbf{i}$$
 (6)

$$x_{ij}(t,z) \ge 0$$
, $\delta_i(t,z) \ge 0$, $\varepsilon_j(t,z) \ge 0$ $i = 1,2,...,n$, $j = 1,2,...,m(7)$

(граничные условия-наиболее часто в технических и экономических задачах все искомые переменные, как правило, неотрицательны),

Где: n, m- соответственно, общее количество производителей (поставщиков) и потребителей;

t, *z* - соответственно, время (месяц, квартал, год и признак, характеризующие природно-климатических условиях;

 $a_i(t,z)$ -общий объем производствоеі-го производителя в t-ом периода и 3-ом условиях;

 $b_j(t,z)$ -общий объем потребности і-го потребителя в t-ом периоде и в рассматриваемых условиях;

 $e_{ij}(t,z)$ -ущерб при перевозке 1т. груза от i-го поставщика до j-го потребителя t-ом периоде и в рассматриваемых условиях (в сумах);

 $q_{ij}(t,z)$ себестоимость перевозки 1т. груза от i-го поставщика до j-го потребителя в рассматриваемых условиях (в сумах);

 $a_{ij}(t,z)$ - доля потеря грузов при до j-го потребителя в рассматриваемых природно-климатических условиях.

 $(3десь 0 \le a_{ii}(t, z) \ll 1$ при всех i, j, t, z);

 $x_{ij}(t,z)$ - необходимый объем грузов, перевозимого из *i*-го производителя на j-й потребителя в рассматриваемых условиях (подлежит к определению);

 $\delta_i(t,z)$ - общий объем потеря при перевозке грузов от і-го поставщика в рассматриваемых условиях;

 $\varepsilon_{j}(t,z)$ - общий объем потеря при перевозке грузов до j-го потребителя в рассматриваемых условиях;

Результаты

Результаты моделирования показали, что использование динамической многокритериальной модели позволяет значительно снизить транспортные затраты и время доставки грузов при сохранении требуемого уровня экологической безопасности. В частности, модель обеспечивает адаптацию логистической схемы в зависимости от изменения климатических условий, что особенно важно при планировании операций в горных и труднодоступных районах.

Нам известно, что задачи (1)-(7), в которых оптимизация проводится по нескольким критериям (F_3 , F_T , F_D), называют задачами многокритериальной

оптимизации. Такая задача представляет собой попытку найти компромисс между принятыми критериями. [1,2]

Решение многокритериальной задачи (1)- (7) сводится к оптимизации по одному обобщенному критерию (F), в который входят все принятые критерии со своими весовыми коэффициентами (α_1 , α_2 , α_3) (весовые коэффициенты определяются, например, с помощью экспертных оценок).

Целевой функции в общем случае имеют разные единицы измерения. Поэтому в F введено умножение третий целевой функции на ее нормированное значение β (β-цена 1 т. Груза, сум/т.).

Обобщенная критерия (F) записывается следующим образом:

$$F = \alpha_1 F_9 + \alpha_2 F_T + \alpha_3 F_n \rightarrow min(8)$$

$$\alpha_1 + \alpha_2 + \alpha_3 = 1,0 < \alpha_v < 1, v = 1,2,3$$
 (9)

После некоторых алгебраических преобразований задачи (4)-(7) и (9), имеем следующую одно критериальную транспортную задачу:

$$F = \sum_{i=1}^{n} \sum_{j=1}^{m} z_{ij}(t, \mathcal{L}\mathcal{Z}) x_{ij}(t, \mathcal{Z}) \rightarrow \min \mathcal{L}\mathcal{L}$$
 (10)

при ограничениях (4)-(7).

Где
$$z_{ij}(t,z)=\alpha_1 e_{ij}(t,z)+\alpha_2 \beta q_{ij}(t,z)+\alpha_3 \gamma a_{ij}(t,z)$$

Если закрытая транспортная задача, то $\sum_{i=1}^{n} a_i(t, z) = \sum_{j=1}^{m} b_j(t, z)$ и следовательно

$$\sum_{i=1}^{n} \delta_{i}(t, z) = \sum_{j=1}^{m} \varepsilon_{j}(t, z)$$

Тогда после подстановкой

$$x_{ij}(t,z) = \frac{x_{ij}^{i}(t,z)}{1 - a_{ii}(t,z)}$$

Из задачи (10), (4)-(7) получим следующую одно критериальную динамическую задачу:

$$F = \sum_{i=1}^{n} \sum_{j=1}^{m} z_{ij}^{i}(t, z) x_{ij}^{i}(t, z) \rightarrow min (11)$$

при ограничениях

$$\sum_{i=1}^{n} x_{ij}^{i}(t, z) = b_{j}^{i}(t, z), j = 1, 2, ..., m, \quad (12)$$

$$\sum_{j=1}^{m} x_{ij}^{i}(t,z) = a_{i}^{i}(t,z), i=1,2,...,n, (13)$$

$$x_{ij}^{i}(t,z) \ge 0, i=1,2,...,n, j=1,2,...,n, (14)$$
где
$$x_{ij}^{i}(t,z) = \left[1 - a_{ij}(t,z)\right] x_{ij},$$

$$a_{i}^{i}(t,z) = a_{i}(t,z) - \delta_{i}(t,z),$$

$$b_{j}^{i}(t,z) = b_{j}(t,z) - \varepsilon_{j}(t,z),$$

$$z_{ij}^{i}(t,z) = \frac{z_{ij}(t,z)}{1 - a_{ii}(t,z)}, i=1,2,...,n, j=1,2,...,m$$

Исходние допустимое решение задачи (11)-(14) может быть поучено по алгоритму «минимальной удельной стоимости» по каждому t и z ,и имеет вид

$$x_{ij}(t,z) = \frac{x_{ij}^{i}(t,z)}{1 - a_{ii}(t,z)}$$
(15)

Рассчитанные оптимальные объемы перевозок по видам транспорта демонстрируют эффективность комбинированного применения авиационного, автомобильного и железнодорожного транспорта. Это подтверждает необходимость комплексного подхода к управлению транспортными системами в экстремальных ситуациях.

Обсуждение и заключение

Предложенная многокритериальная динамическая модель служит универсальным инструментом поддержки решений в условиях неопределённости и ограниченных ресурсов. Она пригодна для планирования транспортных операций в зонах стихийных бедствий и оптимизации логистики в удалённых регионах.

трёхкритериальной Отмечено, решение задачи существенно что отличается от решений по каждому отдельному критерию. Модель учитывает взаимодействие разных видов транспорта: наземного ДО границы районов и вертолётного внутри этих зон. труднодоступных Такое распределение перевозок обеспечивает социально-экономическую эффективность и снижает ущерб.

Ключевое преимущество модели — интеграция экологических, экономических и временных критериев, позволяющая находить оптимальный баланс между скоростью, стоимостью и безопасностью. Дальнейшие исследования связаны с разработкой интеллектуальных методов адаптации

модели в реальном времени с использованием искусственного интеллекта и ІоТ-технологий.

Литература.

- 1. Бережная Е.В. Математические методы моделирования экономических систем. М.: Финансы и статистика, 2006. 432 с.
- 2. Лакинский В.С. (ред.). Модели и методы теории логистики. СПб.: Питер, $2007.-448~\mathrm{c}.$
- 3. Горев А.Э. Основы теории транспортных систем. СПб.: СПбГАСУ, 2010. 214 с.