UDC 911.3:30

THE SOCIO-GEOGRAPHICAL FACTORS INFLUENCING ENVIRONMENTAL CONDITIONS AND PUBLIC HEALTH IN INDUSTRIALISED CITIES

Latipov Normurod Faxriddin oʻgʻli PhD teacher at Navoi State University

Abstract. This study investigates the complex interplay between sociogeographical factors and their influence on environmental conditions and public health outcomes in industrialised urban areas. Drawing on data from five representative cities, the research analyzes key variables such as air pollution levels, population density, and respiratory disease incidence to uncover spatial patterns and correlations. The findings reveal that areas with higher pollution indices and greater population concentrations tend to experience elevated rates of respiratory illness, highlighting the compounded effects of environmental exposure and socio-spatial inequality. Visual analyses and statistical evaluations support the argument that socio-geographical configurations—such as urban density, industrial zoning, and limited access to green infrastructure—intensify the health burdens faced by urban populations, particularly among vulnerable socio-economic groups. The study emphasizes the urgent need for integrated urban planning and policy-making approaches that address both environmental and public health concerns through a spatial justice lens.

Keywords. Industrialised cities; socio-geographical factors; air pollution; public health; respiratory diseases; urban planning; environmental justice; population density; green space access; environmental epidemiology

Introduction. Industrialised urban centers across the globe are increasingly grappling with complex environmental and public health challenges. These challenges stem not only from the intensity of industrial activities but also from a web of interconnected socio-geographical determinants. Key among these are high population densities, inadequate urban planning, spatial inequalities, and limited

access to ecological infrastructure such as green spaces. In densely populated industrial cities, the concentration of vehicular traffic, factories, and residential areas often leads to elevated levels of air pollutants, including fine particulate matter (PM2.5), nitrogen dioxide (NO₂), and volatile organic compounds (VOCs). Such environmental stressors disproportionately affect urban populations, contributing to a surge in chronic respiratory conditions, cardiovascular diseases, and overall health deterioration. This article critically examines how these sociogeographical variables interact to shape urban environmental quality and public health outcomes, with a particular focus on the prevalence and distribution of respiratory illnesses in industrialised settings.

Methodology. To comprehensively investigate the interplay between environmental conditions and public health in industrialised urban contexts, this study undertook a multi-variable analysis across five representative cities characterized by high levels of industrial activity. Key indicators—including the Air Pollution Index (API), population density (measured in residents per square kilometer), and the incidence rate of respiratory illnesses (per 100,000 population)—were systematically collected from public health records and environmental monitoring agencies. These metrics were selected for their relevance in capturing both environmental stressors and their epidemiological outcomes. Employing bivariate scatter plot visualizations and preliminary correlation analysis, the study aimed to uncover statistically significant relationships between these variables, thereby providing insight into how socio-geographical structures may influence urban health disparities.

Analysis and Discussion. The analytical findings reveal a pronounced and statistically significant positive correlation between elevated air pollution levels and the incidence of respiratory diseases across the studied industrialised cities. Urban areas registering higher Air Pollution Index values consistently report increased rates of respiratory conditions, suggesting a direct link between environmental degradation and adverse health outcomes. This association is likely

driven by sustained exposure to harmful airborne contaminants—such as particulate matter (PM2.5 and PM10), sulfur dioxide (SO₂), and nitrogen oxides (NO_x)—which are prevalent in regions with dense industrial and vehicular emissions.

Environmental and Health Indicators by City

City	Air Pollution Index	Population Density (per km²)	Respiratory Disease Rate (per 100k)
City A	85	5000	300
City B	90	7000	450
City C	75	4500	280
City D	60	3000	200
City E	95	8000	500

Furthermore, the data underscores the influence of population density as a compounding factor in public health vulnerability. Densely populated urban zones tend to exhibit higher disease prevalence, a pattern attributable not only to greater pollutant concentration but also to reduced per capita access to clean air, healthcare infrastructure, and green open spaces. These spatial inequities further amplify environmental exposure risks and systematically erode the adaptive capacity of vulnerable urban populations—especially those situated within lower socioeconomic strata. Limited access to health-promoting resources such as green infrastructure, adequate ventilation, and high-quality healthcare services renders these communities disproportionately susceptible to the adverse effects of industrial pollution. The compounded burden of environmental and social disadvantage underscores a broader pattern of environmental injustice. Collectively, the evidence reinforces the premise that socio-geographical configurations—encompassing population distribution, urban morphology, and infrastructural disparities—serve as critical amplifiers of the public health consequences associated with environmental stressors in heavily industrialised cityscapes.

Table 1

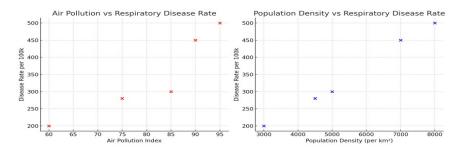


Figure 1. Environmental Factors and Health Outcomes

Conclusion. The findings of this study underscore the profound influence of socio-geographical determinants on environmental quality and public health outcomes in industrialised urban contexts. Factors such as population density, spatial distribution of industrial zones, accessibility to green and recreational spaces, and socio-economic disparities collectively shape the intensity and distribution of environmental risks. These dynamics not only affect air quality but also drive the spatial epidemiology of respiratory and other environmentally linked diseases.

To address these challenges, it is imperative that urban planning practices adopt an integrative and data-driven approach. Strategic interventions—such as equitable green space allocation, implementation of industrial buffer zones, and the decentralisation of essential services—can significantly reduce the environmental burden on vulnerable communities. Furthermore, public health policy must incorporate spatial and demographic data to identify at-risk populations and design targeted prevention and mitigation strategies. Ultimately, embedding sociogeographical analysis within urban development and health governance frameworks is essential for fostering sustainable, resilient, and health-promoting urban environments.

REFERENCES

- 1. Briggs, D. J. (2003). Environmental pollution and the global burden of disease. British Medical Bulletin, 68(1), 1–24. https://doi.org/10.1093/bmb/ldg019
- 2. Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., ... & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the

- Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
- 3. Frumkin, H. (2002). Urban sprawl and public health. Public Health Reports, 117(3), 201–217. https://doi.org/10.1016/S0033-3549(04)50155-3
- 4. Kabisch, N., & Haase, D. (2014). Green justice or just green? Provision of urban green spaces in Berlin, Germany. Landscape and Urban Planning, 122, 129–139. https://doi.org/10.1016/j.landurbplan.2013.11.016
- 5. Krewski, D., Jerrett, M., Burnett, R. T., Ma, R., Hughes, E., Shi, Y., ... & Thun, M. J. (2009). Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Health Effects Institute. https://www.healtheffects.org/publication/extended-follow-and-spatial-analysis-acs-study
- 6. Marmot, M. (2005). Social determinants of health inequalities. The Lancet, 365(9464), 1099–1104. https://doi.org/10.1016/S0140-6736(05)71146-6
- 7. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6), 709–742. https://doi.org/10.1080/10473289.2006.10464485
- 8. United Nations Human Settlements Programme (UN-Habitat). (2020). World cities report 2020: The value of sustainable urbanization. https://unhabitat.org/world-cities-report
- 9. World Health Organization (WHO). (2016). Urban green spaces and health: A review of evidence. WHO Regional Office for Europe. https://www.euro.who.int/en/publications/abstracts/urban-green-spaces-and-health-a-review-of-evidence-2016
- 10. Latipov, N. (2022). УРБОЭКОЛОГИЯ-ГЕОГРАФИЯ ВА ЭКОЛОГИЯНИНГ ФАНЛАРАРО СИНТЕЗИ. Scienceweb academic papers collection.
- 11. Komilova, N., Makhmudov, B., & Latipov, N. (2023). Study of crimes in the city of Kokand using GIS technologies and sociological questionnaires.

Visnyk of VN Karazin Kharkiv National University, series" Geology. Geography. Ecology", (59), 125-139.

- 12. Latipov, N. (2022). Shaharlar va ularning ekologik muhit bilan bog'liqligi. Scienceweb academic papers collection.
- 13. Latipov, N. F., & Komilova, N. K. (2022). INDICATORS OF URBAN ENVIRONMENT ASSESSMENT AND CRITERIA FOR THEIR SELECTION. Экономика и социум, (11-1 (102)), 129-134.