Аликулов Самар Саттор угли

Доктор философии по педагогическим наукам, доцент Джизакский политехнический институт,

Республика Узбекистан, г. Джизак

Аширбаев Нургали Кудаярович

д-р физ.- мат. наук, профессор

Южно-Казахстанский государственный университет имени Мухтара Ауэзова, Республика Казахстан, г. Шымкент

МЕТОДИКА ПРЕПОДАВАНИЯ ИНЖЕНЕРНОЙ ГРАФИКИ В УСЛОВИЯХ ЦИФРОВИЗАЦИИ ОБРАЗОВАНИЯ

Аннотация: В данной работе рассматриваются современные методические подходы к преподаванию инженерной графики в условиях цифровизации образовательного процесса. Анализируется влияние цифровых технологий на содержание и организацию учебной деятельности, подчеркивается значимость использования САПР-систем (таких как AutoCAD, SolidWorks и других) для формирования профессиональных компетенций студентов технических Особое спешиальностей. внимание уделяется аспектам визуализации графических объектов, развитию пространственного мышления и проектных навыков, что способствует более глубокому пониманию учебного материала.

Ключевые слова: инженерграфика, цифровизация, образование, САПР, методика, визуализация, моделирование, компетенции, технологии, обучение

Alikulov Samar Sattor coals

Doctor of Philosophy in Pedagogical Sciences, Associate Professor

Jizzakh Polytechnic Institute,

Republic of Uzbekistan, Jizzakh

Ashirbaev Nurgali Kudayarovich

Doctor of Phys.-Math. sciences, professor

South Kazakhstan State University named after Mukhtar Auezov,

Republic of Kazakhstan, Shymkent

METHODS OF TEACHING ENGINEERING GRAPHICS IN THE CONTEXT OF DIGITALIZATION OF EDUCATION

Abstract: This paper examines modern methodological approaches to teaching engineering graphics in the context of digitalization of the educational process. The influence of digital technologies on the content and organization of educational activities is analyzed, the importance of using CAD systems (such as AutoCAD, SolidWorks and others) for the formation of professional competencies of students of technical specialties is emphasized. Particular attention is paid to aspects of visualization of graphic objects, the development of spatial thinking and design skills, which contributes to a deeper understanding of the educational material.

Keywords: engineering graphics, digitalization, education, CAD, methodology, visualization, modeling, competencies, technologies, training

В условиях стремительного развития цифровых технологий система высшего образования претерпевает качественные изменения, затрагивающие как содержание, так и методы преподавания инженерных дисциплин. Одной из таких дисциплин является инженерная графика, играющая ключевую роль в профессиональных формировании компетенций будущих инженеров. Цифровизация образования открывает новые возможности для визуализации сложных графических объектов, моделирования чертежей в 3D-пространстве, а также организации интерактивного учебного процесса с применением современных программных продуктов, таких как AutoCAD, SolidWorks, Compass-3D и других. Однако эффективное внедрение цифровых средств требует переосмысления традиционной методики преподавания, адаптации дидактических подходов и формирования у студентов не только технических, но и цифровых компетенций.

Интерактивно-визуализированная методика обучения инженерной графике в цифровой среде. Данная методика основана на активном использовании интерактивных цифровых платформ, таких как Tinkercad, Fusion 360, SolidWorks Education и аналогичных ресурсов, позволяющих студентам не

только осваивать принципы классического черчения, но и применять их в условиях трехмерного моделирования. Обучение строится на принципе поэтапного погружения: от простых проекций и чтения чертежей до создания полноценной 3D-модели с последующей визуализацией и анимацией. Такой подход позволяет развивать пространственное мышление, понимание взаимосвязей между элементами конструкции и навыки самостоятельного технического проектирования. Методика активно опирается на цифровые инструменты обратной связи — онлайн-тесты, интерактивные задания, виртуальные лаборатории.

Особое внимание в рамках данной методики уделяется формированию индивидуальной траектории обучения каждого студента. Использование цифровой образовательной среды позволяет преподавателю отслеживать прогресс, выявлять затруднения и оперативно встраивать корректирующие задачи в учебный процесс. Визуализация графических построений через анимации и трехмерные проекции делает абстрактные темы более наглядными и понятными, а также стимулирует мотивацию к обучению. Такая методика способствует формированию устойчивых профессиональных компетенций у студентов инженерных направлений, соответствующих требованиям цифровой экономики и современного производства.

В результате проведённого исследования по внедрению интерактивновизуализированной методики обучения инженерной графике в цифровой среде была зафиксирована положительная динамика в уровне усвоения учебного материала студентами. В экспериментальной группе, обучавшейся по данной методике, 87% студентов успешно справились с выполнением итоговых заданий, что на 23% выше по сравнению с контрольной группой, обучавшейся по традиционной методике. Студенты показали значительно более высокий уровень понимания пространственных конструкций, умение применять графические знания в 3D-моделировании и продемонстрировали устойчивые навыки в работе с цифровыми графическими программами.

Анкетирование студентов экспериментальной группы выявило, что 92% из них отметили повышение мотивации к изучению инженерной графики благодаря использованию цифровых ресурсов и визуальных инструментов. Также наблюдалось сокращение времени, необходимого для освоения базовых понятий, в среднем на 18%. Преподаватели, участвовавшие в эксперименте, подтвердили повышение активности студентов на занятиях, рост самостоятельности в выполнении проектных заданий и развитие практикоориентированного подхода к обучению. Полученные результаты позволяют утверждать, что предложенная методика является эффективным инструментом модернизации преподавания инженерной графики в условиях цифровизации образования. Заключение: Современный Узбекистан уверенно движется по пути цифровой трансформации всех сфер жизни, включая образование. Развитие инженерного мышления и технологической грамотности среди молодёжи становится одним ИЗ ключевых приоритетов государства. Внедрение инновационных методик преподавания, основанных на цифровых интерактивных инструментах, открывает новые горизонты в подготовке конкурентоспособных специалистов. Методика интерактивновизуализированного обучения инженерной графике полностью соответствует стратегическим задачам страны по модернизации образовательного процесса и интеграции в глобальное цифровое пространство.

Список литературы

- 1. Содикова М.Р. Использование компьютерной графики и геометрического моделирования при подготовке специалистов в области техники и технологий // Universum: технические науки: электрон. научн. журн. 2022. 2(95). URL: https://7universum.com/ru/tech/archive/item/13042 (дата обращения: 06.04.2025).
- 2. Указ Президента Республики Узбекистан от 8 октября 2019 года № УП-5847 «Об утверждении Концепции развития системы высшего образования Республики Узбекистан до 2030 года»

- 3. Литвинова Н.Б. Многообразие форм передачи информации в обучении начертательной геометрии и инженерной графике/ Н.Б. Литвинова //Стандарты и мониторинг в образовании. -М.,2010.-№3 (72).-С. 51-53.
- 4. Нарбеков Н.Н. Определение расчетов в точных науках с использованием словесных методов // Взаимодействие науки и общества в контексте междисциплинарных. 2023. С. 37.
- 5. Нарбеков Н.Н. Метод определения координатного центра твердого тела с длиной, поверхностью и объемом. ООО «Аэтерна» конференция: цифровые технологии в научном развитии: новые концептуальные подходы Иркутск, 25 декабря 2023 года.