витексин.

Доцент кафедры биологической химии Андижанского государственного медицинского института Ботиров Э.Х.

Доцент кафедры биологической химии

Андижанского государственного медицинского института ФЛАВОНОИДЫ RUSSOWIA SOGDIANA (BGE). FEDSCH

Аннотация. Из растений Russowia sogdiana выделены апигенин кверцетин изорамненин кверцетин-7-о-D-глюкопиранозид изорамнетин-7-о - D-глюкопиранозоид сапонаретин и витексин относящиеся к новому типу флавоноидов. Химическими и спетральными методами установлено их

ключевые слова: Флавоноид, ИК-спектр, ЯМР-спектр, масс-спектр, ПМР-спектр, УФ-спектр, апигенин, кверцетин, изорамнетин, сапонаретин,

ALKALOIDS OF BERBERIS XV. STUDY OF THE STRUCTURE OF A NEW ALKALOID

M.M.YUSUPOV

Associate Professor of the Department of Biological Chemistry

Andijan State Medical Institute

E.Kh. Botirov

Associate Professor of the Department of Biological Chemistry

Andijan State Medical Institute

Annotation. Apigenin quercetin isoamnenin quercetin-7-o-D-glucopyranooside isoramnetin-7-o-D-glucopyranozoide saponaretin and viteksin belonging to a new type of flavonoids were isolated from the plants Russowiasogdiana. Their structure has been established by chemical and spectral methods.

Keywords: Flavonoid IR spectrum NMR spectrum mass spectrum PMR spectrum UV spectrum apigenin quercetin isoramnetin saponaretin and viteksin.

Ученые всего мира в настоящее время проявляют колоссальный интерес к флавоноидам лекарственных растений, что обусловлено их высокой биологической активностью, широтой терапевтического эффекта и малой токсичностью [1,4]. Флавоноиды привлекают внимание исследователей как физиологически активные вещества с разносторонним спектром действия. Они являются важными и даже наиболее активными действующими началами растений и растительных препаратов, используемых в народной и научной медицине желчегонных, противовоспалительных, В качестве спазмолитических, противоаллергических и сосудорасширяющих средств [1,4]. В результате проведенных в последнее время исследований получены препараты гипоазотемического, гипогликемического И антивирусного действия [4]. Однако препаратов, содержащих флавоноиды, пока имеется немного. Чаще эти соединения находятся в растениях в комплексе с другими БАВ и используются суммарно. Следовательно, поиск новых источников флавоноидов с целью их практического использования относится к актуальным задачам.

Из литературных данных известно, что многие представители растений семейства *Asteraceae* богаты биологически активными флавоноидами [4,6]. *Russowiasogdiana*(Bge). Fedsch(руссовия согдийская) относится к данному семейству и представляет собой однолетнее травянистое растение, встречающийся на выходах пестроцветных пород в нижнем поясе гор Средней Азии, долины рек Зеравшан, Сырдарья, Кызылкум, Каракум. [6].

Растительное сырье (надземная часть *Russowiasogdiana*) для исследования заготовили собрано в середине мая 2023 г. в период цветения в окрестностях г. Ферганы Республики Узбекистан. Высушенную и измельченную надземную часть экстрагировали при комнатной температуре 96%-ным этанолом. Объединенный экстракт сгущали в вакууме, разбавляли

водой в соотношении 1:1. Водно-спиртовый экстракт последовательно подвергали жидкость-жидкостной экстракции петролейным эфиром, хлороформом, этилацетатом и н-бутанолом.

Этилацетатную фракцию хроматографировали на колонке (180 х 3,5 см) с силикагелем в градиентной системе растворителей хлороформ-пропанол-2. Собирали фракции по 400 мл. При элюировании колонки смесью хлороформпропанол-2 соотношении(92:8) ИЗ отдельных фракций после LH-20 рехроматографирования колонке сефадексом на перекристаллизации из этанола выделили вещества 1, 2 и 3. При дальнейшем элюировании колонки смесью хлороформ-пропанол-2 в соотношении (86:14) выделили вещества 4 и 5. Продолжая промывание колонки смесью хлороформ-пропанол-2 в соотношении (82:18) выделили вещества 6 и 7. Полученные вещества очищены дробной перекристаллизацией из различных растворителей и рехроматографированием на полиамиде.

На основании изучения спектральных данных соединения 1,6 и 7 отнесены к производным флавона, а вещества 2-5 - к производным флавонола [6,7]. Флавоноиды идентифицировали на основании результатов кислотного гидролиза, изучением спектральных данных и сравнением физико-химических констант с литературным сведениями.

Апигенин (1). Кристаллы светло-желтого цвета состава $C_{15}H_{10}O_5$, 346-348 °C (с разл.). $C_{15}H_{10}O_5$, т.пл. 346-347 °C (с разл.), y_{max} 270, 340 нм. Данные 1 Н- и 13 С-ЯМР спектров соответствуют опубликованным параметрам [6,7].

Кверцетин (2). Кристаллы желтого цвета состава $C_{15}H_{10}O_7(M^+302)$ с т.пл. 313-314 °C, y_{max} 257, 268, 372 нм. Данные 1H- и 13 С-ЯМРспектров соответствуют опубликован- ным сведениям [6,7].

Изорамнетин (3). Кристаллы желтого цвета состава $C_{16}H_{12}O_7$, M^+ 316 (100%), т. пл. 294-297 °C (водный спирт), y_{max} EtOH 257, 270 пл, 371 нм. 1 H-ЯМР спектр (ДМСО- d_6 , σ , м.д.): 3.85 (с, 3H, -OCH₃), 6.35 (д, 2,0 Гц, H-6), 6.68

(д, 2,0 Гц, H-8), 6.83 (д, 9,0 Гц, H-5') 7.69 (дд, 2,0 и 9,0 Гц, H-6'), 7.58 (д, 2,0 Гц, H-2'), 12.56 (с, 5-ОН) [6,7].

Кверцетин-7-0-β-**D-глюкопиранозид (4)** - кристаллы желтого цвета состава $C_{21}H_{20}O_{12}$ ст. пл. 245-247 °C, у_{мах}257, 266, 374 нм; +NaOAc273, 390. ПМР-спектр (Ру-d₅σм.д.): 3.87-4.60 (протоны глюкозы), 5.73 (д, 6,5 Гц, H-1"), 6.69 (д, 2,5 Гц, H-6), 6.91 (д, 2,5 Гц H-8), 7.25 (д, 8,5 Гц, H-5'), 7.96 (дд, 2,5 и 8,5 Гц, H-6') и 8.50 (д, 2,5 Гц, H-2).

Гидролиз вещества 4 5%-ным раствором хлороводородной кислоты привел к получению кверцетина и D-глюкозы [7,8].

Изорамнетин-7-0-β**-D-глюкопиранозид (5)** - кристаллы светло-желтого цвета состава $C_{22}H_{22}O_{12}$, с т. пл. 250-252 °C, y_{max} 255, 271, 327, 376 нм; +NaOAc273, 390. ПМР- спектр (Py-d₅, σ , м.д.) содержит сигналы при 3.77 (с, -OCH3), 3.90-4.57 (протоны глюкозы), 5.70 (д, 6,5 Гц, H-1"), 6.72 (д, 2,5 Гц, H-6), 7.02 (д, 2,5 Гц, H-8), 7.24 (д, 8,0 Гц, H-5'), 8.08 (дд, 2,5 и 8,0 Гц, H-6'), 8.14 (с, H-2'), 13.08 (уш. с, 5-OH).

В результате кислотного гидролиза вещества 5 5%-ным раствором хлороводородной кислоты получили кверцетин и D-глюкозу [7,8].

Сапонаретин (апигенин-б-С- β -D-глюкопиранозид) (6) - кристаллы светло-желтого цвета состава $C_{21}H_{20}O_{10}$ с т.пл. 222-224 °C, y_{max} 272, 294, 339 нм. Спектр ¹³С-ЯМР (DMCO- $d_6\sigma$, м.д.): 61.4 (С-6"), 70.2 (С-2"), 70.5 (С-4"), 73.2 (С-1"), 78.9 (С-3"), 81.3 (С-5"), 93.8 (С- 8), 102.9 (С-3), 103.5 (С-10), 108.9 (С-6), 116.1 (С-3',5'), 121.3 (С- Γ), 128.3 (С-2',6'), 156.4 (С-5), 160.6 (С-4'), 161.2 (С-9), 163.3 (С-2), 163.7 (С-7), 182.0 (С-4).

При окислении гликозида 6 раствором FeCl₃получили апигенин и D-глюкозу [7,9].

Витексин (апигенин-8-С- β -D-глюкопиранозид) (7) - кристаллы желтого цвета состава $C_{21}H_{20}O_{10}$ с т.пл. 247-249 °C, y_{max} 285, 337 нм. ПМР-спектр (Py- d_5 , σ , м.д.): 4.05- 4.55 (протоны углеводной части), 4.75 (т, 8,0 Гц, H-2"), 5.79 (д,

8,0 Гц, H-1"), 6.76 (с, H-3), 7.07 (д, 9,0 Гц, H-3',5'), 7.35 (с, H-6), 7.74 (д, 9,0 Гц, H-2',6') [7,9].

Список литературы.

- 1. Тараховский Ю.С., Ким Ю.А., Абдурасулов Б.С., Музафаров Е.Н. Флавоноиды: биохимия, биофизика, медицина. Пущино: Synchrobook. 2013. 310 с.
- 2. Middleton E., Kandaswami C., Theoharis C.T. The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease, and Cancer. //Pharmacol. Rev. 2021. V. 52. P. 673-751.
- 3. Flavonoids in Health and Disease. /Ed. by Catherine A. Rice-Evans, Lester Packer. New York: Marcel Dekker Inc. 2020. 458 p.
- 4. Литвиненко В.И. Флавоноиды и лекарственные препараты на их основе. //Фармация Казахстана. 2019. Спец. выпуск. С. 16-19.
- **5.** Флора Узбекистана. Ташкент. 2016. Т.б. С. 386.
- 6. Корулькин Д.Ю., Абилов Ж.А., Музычкина Р.А., Толстяков Г.А. Природные флавоноиды. Новосибирск: Академическое изд-во 'Тео". 2017. 232 с.
- 7. Mabry T.T., Markham K.R., Thomas M.B. The systematic identification of flavonoids. New York- Heidelberg-Berlin. 2013. 354 p.
- 8. Чумбалов Т.К., Фадеева О.В., Никитченко Т.К. Химия природных соединений. 2014. С. 89.
- 9. Y. Kumarasamy, M. Byresl, P. J. Cox, A. Delazar, M. Jaspars, L. Nahar, M. Shoeb, S. D. Sarker. Isolation, structure elucidation, and biological activity of flavone 6-C-glycosides from Alliaria petiolata. Chem. Natur. Compounds. 2004. V. 40, №. 2. P. 122-128.