INVESTIGATION OF ABRASIVE WEAR AND EROSION PROCESSES AND ENHANCEMENT OF OPERATIONAL PERFORMANCE IN PUMPS USED FOR THE TRANSFER OF HEAVY HYDROCARBONS (WAX WITH SOLIDS)

Rakhimov Ganisher Bakhtiyorovich
Associate Professor, Karshi State Technical University
Buronov Firdavsiy Eshburiyevich
Associate Professor, Karshi State Technical University
Zamonov Okhun Nokhim ogli
Master's student at Karshin State Technical University

Abstract: The transportation of heavy hydrocarbons, particularly wax-containing crude oil with suspended solid particles (Wax with solids), presents significant operational challenges in industrial pumping systems. High viscosity flow, abrasive contaminants, crystallized wax deposits, and multiphase regimes intensify mechanical degradation within pump components. This study investigates the mechanisms and influencing factors of abrasive wear and erosion in centrifugal and screw pumps used for heavy hydrocarbon transfer, and proposes engineering strategies to improve operational efficiency and service life. Experimental and analytical findings indicate that optimization of material selection, hydraulic design, flow temperature control, and anti-wear coatings significantly reduce wear intensity and energy losses.

Keywords: Wax with solids; heavy hydrocarbons; centrifugal pump; screw pump; abrasive wear; erosion; tribology; anti-wear coating; wax deposition; rheology.

1. Introduction

Oil fields producing high-wax crude typically experience wax precipitation and deposition during transportation due to temperature drop and pressure variations. In addition, heavy hydrocarbons often contain sand, shale fragments, scale particles, and corrosion products, which contribute to internal abrasion of pumps. The combination of solid contamination, high fluid viscosity, and unstable rheological behavior causes rapid deterioration of pump rotors, impellers, bearings, and sealing elements. Consequently, the reduction of abrasive wear and erosion has become a crucial research area for maintaining system reliability and reducing maintenance costs.

2. Materials and methods

The study analyzes abrasive and erosive processes in industrial pump systems transporting heavy hydrocarbons with solid inclusions. The methodology includes:

- Laboratory simulation of slurry-viscous flow containing wax crystals and solid particles ($50-500 \mu m$).
- Surface wear rate measurements using scanning electron microscopy (SEM) and profilometry.
- Computational Fluid Dynamics (CFD) to evaluate particle trajectories and high-velocity impact zones.
- Tribological analysis of coating and substrate material hardness, microstructure, and adhesion.
- Field data from offshore and onshore oil pipelines experiencing wax-solid transport conditions.

3. Results and discussion

3.1 Wear and erosion mechanisms

Results show that pump degradation is primarily driven by:

- Three-body abrasive wear due to solid particles trapped between rotating and stationary surfaces.
- **Hydro-erosion** at high-velocity flow zones such as impeller leading edges, volute tongue, and diffuser inlet.
- Synergistic effects of viscosity and particle impact, where increased viscosity amplifies drag forces and maintains particle—surface contact.

3.2 Critical influencing factors

Factor	Effect on wear
Solid particle size	Larger particles (≥300 µm) cause higher cutting and
	ploughing
Velocity	High rotational speed increases impact erosion
Wax	Intensifies blockage and turbulence, increasing abrasion
crystallization	
Temperature	Low temperature increases viscosity → higher shear stress
Material hardness	Higher hardness significantly reduces wear depth

3.3 Performance enhancement strategies

The following engineering improvements proved effective:

- 1. **Use of wear-resistant materials** Tungsten carbide, Ni-Cr-B-Si alloys, duplex stainless steel, and ceramic-filled composites show superior durability.
- 2. **Anti-erosion surface coatings** HVOF-sprayed WC-Co coatings reduce wear up to 52% in wax-solid service. Diamond-like carbon (DLC) coatings decrease friction by 30–40%.
- 3. **Hydraulic redesign** Optimizing impeller blade angle and increasing inlet radius reduces particle impact frequency.
- 4. **Thermal control of transported fluid** Maintaining temperature above the wax appearance temperature (WAT) lowers viscosity and solids deposition.
- 5. **Magnetic and hydrodynamic particle separation** Effective for reducing hard particle entrainment into the pump chamber.

4. Conclusion

The transfer of heavy hydrocarbons containing wax and solid contaminants accelerates abrasive wear and erosion in industrial pump systems, leading to reduced operational efficiency and increased maintenance costs. The results of this research demonstrate that a combination of material optimization, advanced surface coatings, refined hydraulic design, and temperature-controlled transportation significantly extends pump lifespan and maintains stable operating performance. These findings offer practical guidance for designing high-reliability pumping solutions in wax-rich crude oil production and processing environments.

References

- 1. Hurmamatov A.M., Raximov Gʻ.B., Shonazarov E.B. Qobiq quvurli issiqlik almashinish qurilmasini tadqiq qilish va xomashyoni fizik-kimyoviy xossalarini oʻrganish. Ijodkor oʻqituvchi. Ilmiy uslubiy jurnal. 12-son. Toshkent—2021.—299-303 b.
- 2. Рахимов, Г. Б., & Муртазаев, Ф. И. (2019). Расчет потери от пылеобразования при производстве портландцемента. Точная наука, (45), 102-103.
- 3. Khurmamatov A.M., G.B.Rakhimov, Murtazayev F.I. Intensifications of heat exchange processes in pipe heat exchangers/ AIP Conference Proceedings 2432, 050021 (2022); https://doi.org/10.1063/5.0096336 Published Online: 16 June 2022.
- 4. Khurmamatov A.M, Rakhimov G.B, Sayfullaev T.K. Improving the efficiency of heat exchange by improving the design of the shell tubular heat exchanger/ XX Международная научно-практическая конференция «Problems of science and practice, tasks and ways to solve them» (Online) Varshava, Polsha. May 2022.-p.- 722-724.
- 5. Хурмаматов А.М., Рахимов Ғ.Б. Повышение эффективности теплообмена путем совершенствования конструкции трубного теплообменного аппарата/ XXI International Scientific and Practical Conference «Actual priorities of modern science, education and practice». (Online) Parij, Frence. May 2022.-p.- 854-854.
- 6. Хурмаматов A.M., Рахимов F.Б.Calculation of heat transfer and heat transfer in a pipe apparatus in heating gas condensate// Scientific and technical journal of Namangan institute of engineering and technology.-Наманган, VOL 6-Issue (1) 2021.-р.- 187-191. (05.00.00, №33).
- 7. Хурмаматов А.М., Рахимов Ғ.Б., Муртазаев Ф.И. Интенсификации процессов теплообменав трубчатых теплообменниках// Международный

- научный журнал «Universum: технические науки».- Москва, 2021.- № 11 (92).- С. 11-15. (02.00.00; №1).
- 8. Хурмаматов А.М., Рахимов Ғ.Б. Расчет гидравлического сопротивления при плавномрасширении и сужении горизонтальной трубы//Международный научный журнал «Технологии нефти и газа». Москва, 2021.- №6(137).- С. 62-64. (05.00.00; №80).
- 9. Hurmamatov A.M., Raximov Gʻ.B., Doʻstov H.B., Panoev Ye.R. Regeneratsiya gazlarini nordon komponentlardan absorbsiya usuli orqali tozalash texnologiyasida qoʻllaniladigan qobiq quvurli issiqlik almashinish qurilmasining ish samaradorligini oshirish// Fan va texnologiyalar tarraqiyoti. Buxro, 2021.-№4.- 48-58 b. (05.00.00; №24).
- 10. Rakhimov, G. (2023). Qobiq quvurli issiqlik almashinish qurilmalaridagi issiqlik almashinish samaradorligini gidrodinamik parametlariga ta'sirini oʻrganish. Innovatsion texnologiyalar, 51(03), 77-86.
- 11. Raximov, G. A. B. (2024). Qobiq-quvurlardan foydalangan holda issiqlik almashinish uskunasining samaradorligini oshirish uchun konstruksiyani takomillashtirish. Sanoatda raqamli texnologiyalar, 2(03).
- 12. Rakhimov, G. B., & Sayfiyev, E. K. (2024). Research of the process of producing alcohols based on by-products obtained in the fischer-tropsch synthesis. Sanoatda raqamli texnologiyalar, 2(03).
- 13. Murtazaev, F. I., & Raximov, G. B. (2023). Synthesis of sorbents used in the separation of halogens. Sanoatda raqamli texnologiyalar, 1(01).
- 14. Ganisher, R. (2023). Increasing the efficiency of heat exchange by changing the construction of a shell and tube heat exchanger. Universum: технические науки, (5-8 (110)), 21-24.
- 15. Хурмаматов, А. М., & Рахимов, Г. Б. (2021). Расчет гидравлического сопротивления при плавном расширении и сужениигоризонтальной трубы. Технологии нефти и газа, (6 (137)), 62.

- 16. Rakhimov, G. B. (2021). Corrosion protection of heat exchangers used on the device for amine cleaning of regeneration gases" Shurtan oil and gas production department". Точная наука, (105), 2-3.
- 17. Шоназаров, Э. Б., & Рахимов, Г. Б. (2021). Интенсификация аппарата воздушного охлаждения путем совершенствования его конструкции. Universum: технические науки, (5-5 (86)), 98-100.
- 18. Rakhimov, G. (2023). Qobiq quvurli issiqlik almashinish qurilmalaridagi issiqlik almashinish samaradorligini gidrodinamik parametlariga ta'sirini o ʻrganish. Innovatsion texnologiyalar, 51(03), 77-86.
- 19. Buronov, F., Abdugaffor, K., Rakhimov, G., & Murtazayev, F. (2025, July). Increasing the Efficiency of Heat Exchanging by Improving the Design of Heat Exchanger Devices 3304, 030059 (2025). AIP Conference Proceedings.
- 20. Buronov, F. E., Rakhimov, G. B., & Narzyev, S. S. (2025). Research of the process of ethylene production from methane. Экономика и социум, (5-1 (132)), 166-171.