MONITORING OF HIGH BLOOD PRESSURE DEPENDING ON SOME MEDICAL AND SOCIAL RISK FACTORS

Valieva, M. Y., Salakhitdinov Z. S.

Andijan State Medical Institute, Andijan city, Uzbekistan
In this article the analysis of the detection as prehypertension and hypertension depending on the major risk factors. Acting on risk factors, we contribute to the prevention of damage to target organs, leading to the development of high blood pressure. It is of great importance in the prevention of cardiovascular diseases and their complications.

Key words: prehypertension, hypertension, risk factors, population.
As is known, the wide prevalence of arterial hypertension (AH) in the adult population and its unfavorable prognosis determines increased professional interest in all aspects of this disease. Naturally, not only cardiologists, but also doctors of all specialties, especially specialists in the field of epidemiology and prevention of cardiovascular diseases, should not remain aloof from this serious medical and social problem, since the "intervention" of hypertension in the form of a pandemic of modern humanity continues [1,3]. In connection with the above, the development of unified approaches to early diagnosis, treatment and prevention of hypertension in the modern population is very important, timely and in demand.

Even in the last century, experts from international organizations came to the conclusion and argued that the so-called risk factors, which include hypertension, have an extraordinary impact on the burden of non-communicable diseases [5]. In such an epidemiological situation, the only cost-effective and sustainable approach to the control of chronic diseases, including hypertension and other risk factors (RFs) in the public health system is the implementation of epidemiological monitoring of risk factors and the participation of the population in preventive measures [2,4].

Purpose: analysis and comparative assessment of the detection of prehypertension and arterial hypertension depending on some medical and social risk factors in the Fergana Valley.

Materials and methods: The material for this study was the results of a one-time epidemiological study of random representative samples from the unorganized male and female population aged > 15-70 years living in Andijan. 2 samples were formed, among the female and male population > 15-70 years old. The survey coverage was 280 (76.9%) and 323 (89.5%) people. A comprehensive survey of the population was carried out using biochemical, epidemiological, instrumental, clinical and survey research methods.

Results: having studied some medical and social risk factors, we were able to identify certain epidemiological trends in this aspect. Table 1 presents a comparative description of the detection rate of PrH and hypertension in the population > 15-70 years old, depending on professional activity.

Table 1
Comparative characteristics of the detection of PrH and hypertension in a population $>15-70$ years of age, depending on professional activity

Characteristic s of the marital status of those surveyed	n	High blood pressure				Difference statistics by ttest (P)		
		PrH (1)		AH (2)				
		available PrH n (\%)	$\begin{gathered} \hline \text { not } \\ \text { available } \\ \text { PrH } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	available AH n (\%)	$\begin{array}{\|c\|} \hline \text { not } \\ \text { available } \\ \text { AH } \\ \mathrm{n}(\%) \\ \hline \end{array}$	$\begin{gathered} n \\ 0 \\ 0 \\ 0 \end{gathered}$		8
Workers	132	$\begin{gathered} 102 \\ (77,3) \end{gathered}$	$\begin{gathered} 30 \\ (22,7) \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ (53,8) \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ (46,2) \end{gathered}$	1-2	-	-
Entrepreneurs	166	$\begin{gathered} 26 \\ (15,7) \end{gathered}$	$\begin{gathered} 140 \\ (84,3) \end{gathered}$	$\begin{gathered} 6 \\ (3,4) \end{gathered}$	$\begin{gathered} 160 \\ (96,3) \end{gathered}$	-	-	1-2
Unemployed	301	$\begin{gathered} 29 \\ (9,7) \end{gathered}$	$\begin{gathered} 272 \\ (90,3) \end{gathered}$	$25(8,4)$	$\begin{gathered} 276 \\ (91,6) \end{gathered}$	-	-	
Unfavorable social status	6	$\begin{gathered} 4 \\ (66,7) \end{gathered}$	$\begin{gathered} 2 \\ (33,3) \end{gathered}$	$\begin{gathered} 3 \\ (50,0) \end{gathered}$	$\begin{gathered} 3 \\ (50,0) \end{gathered}$	1-2	-	-

As can be seen from the data presented in table 1, the detection rate of high blood pressure (HBP) varies significantly depending on the type of professional activity and is: among workers on average 65.6% (77.3%, PrH and $53.8 \% \mathrm{AH}, \mathrm{P}$ <0.05), among entrepreneurs - 19.1% ($15.7 \% \mathrm{PrH}$ and $3.4 \% \mathrm{AH}, \mathrm{P}<0.001$), among the unemployed $-18.1 \%(9.7 \% \mathrm{PrH}$ and $8.4 \% \mathrm{AH}, \mathrm{P}>0.05)$ and in persons with unfavorable social status (USS) - 58.4\% ($66.7 \% \mathrm{PrH}$ and $50.0 \% \mathrm{AH}, \mathrm{P}<0.05$).

To the greatest extent, cases of PrH and hypertension are associated with USS; HBP is determined with high frequency in the working population group and the number of people with prehypertension is significantly greater than that of hypertension.

When analyzing the comparative characteristics of the detection of PrH and AH among the surveyed population, depending on housing conditions (Table 2), we found that in the group of the population with satisfactory living conditions, the frequency of HBP is 44.9% ($28.5 \% \mathrm{PrH}$ and $15.9 \% \mathrm{AH}, \mathrm{P}<0.05$), among people with good conditions $-47.9 \%(27.9 \% \mathrm{PrH}$ and $20.0 \% \mathrm{AH}, \mathrm{P}>0.05)$ and in the presence of poor living conditions -23.1% ($14.3 \% \mathrm{PrH}$ and $8.8 \% \mathrm{AH}, \mathrm{P}<0.05$).

Table 2
Comparative characteristics of the detection of PrH and hypertension in a population > 15-70 years of age, depending on living conditions

Characteristics of living conditions	n	High blood pressure				Difference statistics by ttest (P)		
		PrH (1)		AH (2)				
		available PrH n (\%)	$\begin{gathered} \text { not } \\ \text { available } \\ \text { PrH } \\ \mathrm{n}(\%) \\ \hline \end{gathered}$	availab le AH n (\%)	not available AH n (\%)	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	20	$\stackrel{3}{8}$ 0 0
Satisfactory	207	$59(28,5)$	$\begin{gathered} 148 \\ (71,5) \end{gathered}$	$\begin{gathered} 33 \\ (15,9) \end{gathered}$	$\begin{gathered} 174 \\ (84,1) \end{gathered}$	1-2	-	-
Good	305	$85(27,9)$	$\begin{gathered} 215 \\ (71,2) \\ \hline \end{gathered}$	$\begin{gathered} 61 \\ (20,0) \end{gathered}$	$\begin{gathered} 244 \\ (80,0) \\ \hline \end{gathered}$	-	-	-
Bad	91	$13(14,3)$	$78(85,7)$	$8(8,8)$	$83(91,2)$	1-2	-	-

In general, the data obtained indicate that with the deterioration of the living conditions of those surveyed, the frequency of HBP increases to 67.5% compared
to the rates of HBP in the group of people with good living conditions (47.9\%), that is, almost in 1.5 times $(\mathrm{P}<0.05)$.

Conclusions: based on the results of the study, we can conclude that periodic epidemiological studies aimed at identifying prehypertension and arterial hypertension, depending on the main, most common risk factors, provide reliability and accessibility for assessing true situations regarding high blood pressure.

Thus, evidence-based prevention of behavioral risk factors can prevent the epidemic of arterial hypertension, that is, simple changes in behavior and lifestyle can significantly contribute to the prevention of dangerous cardiovascular complications and improve public health.

Literature:

1. Ageeva F.T., Fomin I.V., Mareev Yu.V. Prevalence of arterial hypertension in the European part of the Russian Federation. Research data from EPOKHA, 2003. // Cardiology. - 2004. - No. 11. - P.51-52
2. Aleksandrov A.A., Rozanov V.B. Epidemiology and prevention of high blood pressure in children and adolescents // Ross. pediatrician.journal. - 1998; 2:18-19 3. Aleksandrov A.A., Shalnova S.A., Deev A.D. Prevalence of smoking among doctors in Moscow // Vopr Narcol 2001; 3:68-70
3. Aleksandrov A.A., Shalnova S.A., Deev A.D. Prevalence of smoking among teachers in Moscow // Vopr Narcol 2002; 4:62-64
4. Alekseeva L.A., Vakhlakov A.N., Sergeeva E.V. Fatal and non-fatal cardiovascular complications in patients with hypertension during long-term observation // Cardiology. - 2002. - No. 4. - P.25-27
