THE ROLE OF LABOR LESSONS IN THE FORMATION OF ENGINEERING THINKING AMONG SCHOOLCHILDREN

Luxmanov Dilshod Baxtiyorovich

Teacher of the Chirchik State Pedagogical University
Republic of Uzbekistan

Abstract: This article explores the significance of labor lessons in shaping the foundations of engineering thinking among schoolchildren. Engineering thinking is understood as a combination of analytical, practical, and creative skills that enable learners to conceptualize, design, and apply solutions to realworld problems. The development of these abilities at the school level is crucial for preparing students for the demands of modern society, where innovation, technical literacy, and problem-solving play a central role. Labor lessons, traditionally associated with manual skills and craft, are now viewed as a dynamic pedagogical space where technical knowledge, creativity, and critical thinking are integrated. Through practical tasks such as woodworking, metalworking, design projects, and basic technological processes, students gain not only hands-on experience but also the ability to approach problems systematically, develop prototypes, and test hypotheses. The article emphasizes that engineering thinking is not limited to vocational education but forms an essential part of general education, contributing to the holistic development of learners. It also highlights the role of labor lessons in connecting theoretical knowledge with practical application, fostering innovation, and cultivating responsibility and teamwork. The study suggests that integrating modern technologies, project-based learning, and interdisciplinary approaches into labor lessons enhances their effectiveness in developing engineering-oriented skills. By aligning labor lessons with current educational priorities, schools can create an environment where students acquire essential competencies for future careers in science, technology, engineering, and mathematics. The article concludes that

the rethinking of labor lessons as a formative stage for engineering thinking is vital in advancing both personal and professional growth among schoolchildren.

Keywords: labor lessons, engineering thinking, school education, practical skills, project-based learning, innovation, creativity, technical literacy, problemsolving, pedagogy.

Introduction

In contemporary education, the role of labor lessons has undergone significant transformation, moving far beyond their initial purpose of developing basic manual skills. Today, these lessons are increasingly recognized as a for cultivating engineering thinking schoolchildren. platform among Engineering thinking encompasses a set of abilities that include systematic analysis, logical reasoning, problem-solving, creativity, and the application of technical knowledge to practical situations. It is an essential competency for young learners growing up in a society driven by technological advancements, where innovative approaches and engineering-based solutions are needed in every sphere of life. Schools, therefore, must take responsibility for introducing students to the fundamental aspects of engineering thinking, and labor lessons offer an effective and accessible context for this task.

At the core of labor education lies the connection between theory and practice. Students who engage in labor lessons are required not only to follow instructions but also to make decisions, test hypotheses, and evaluate outcomes. These processes naturally foster an engineering mindset, as learners shift from simple repetition of manual tasks to creative engagement with design and production. For example, when a student creates a small wooden model, they must calculate dimensions, ensure accuracy, and troubleshoot challenges during the process. Such experiences develop both cognitive and practical skills that are central to engineering disciplines. Moreover, labor lessons provide an opportunity for collaborative learning, as students often work in groups, share responsibilities, and solve problems collectively. This cooperative element

mirrors real-world engineering practices, where teamwork and communication are as crucial as technical knowledge.

Another critical aspect of labor lessons is their adaptability to modern educational trends. With the integration of digital tools, robotics kits, and design software, traditional labor classes are evolving into multidisciplinary workshops where science, technology, engineering, and mathematics are interconnected. This shift not only keeps the lessons relevant but also equips students with the confidence to engage with complex systems and future innovations. Furthermore, labor lessons help nurture values such as persistence, responsibility, and independence, qualities that underpin both personal growth and professional success. As such, the introduction of engineering thinking through labor lessons is not simply about preparing students for technical professions, but also about fostering a generation capable of creativity, adaptability, and resilience in the face of modern challenges.

Main Part. The formation of engineering thinking in schoolchildren through labor lessons can be analyzed from several interrelated dimensions. First, labor lessons provide a direct link between theoretical concepts taught in subjects such as mathematics, physics, and technology, and their practical application. For example, when students design and construct a simple device or model, they are required to apply mathematical calculations, understand the principles of mechanics, and use technological tools. This cross-disciplinary engagement helps learners to see knowledge not as isolated subjects but as an interconnected system, a perspective that is central to engineering thinking.

Second, labor lessons foster problem-solving skills by presenting students with tasks that involve real-life challenges. Unlike purely theoretical assignments, practical projects often include unexpected difficulties, such as inaccuracies in measurement or limitations in materials. Students are therefore encouraged to analyze problems, explore alternative solutions, and adapt strategies to achieve their goals. This process mirrors the iterative cycle of

engineering design, where ideas are tested, refined, and improved through experimentation and reflection. By working through these challenges, schoolchildren develop resilience and flexibility, qualities that are vital in the modern world of technology and innovation.

Third, labor lessons play an important role in nurturing creativity and imagination. While engineering is often perceived as a technical discipline, it is equally dependent on creative thought. The ability to visualize new solutions, design original models, and integrate artistic elements into functional projects expands the intellectual capacity of learners. In this sense, labor lessons bridge the gap between technical precision and creative expression, showing students that innovation emerges from the balance of both.

Additionally, labor lessons contribute to the development of teamwork and communication skills. Many engineering-related tasks require collaboration, where each member of a group takes responsibility for specific aspects of a project. Through collective effort, students learn to negotiate, share ideas, and coordinate activities, thereby gaining a deeper appreciation of the collaborative nature of engineering work. Furthermore, the role of teachers in guiding labor lessons cannot be underestimated. By encouraging inquiry, providing constructive feedback, and integrating modern technologies, teachers transform the classroom into a space where engineering thinking is continuously developed and refined.

Ultimately, the main contribution of labor lessons lies in their holistic approach to student development. Beyond equipping learners with technical literacy, these lessons cultivate independence, responsibility, and an appreciation for productive work. By integrating hands-on practice with intellectual inquiry, labor lessons serve as an essential foundation for preparing students to succeed in an increasingly technological and innovation-driven world.

Conclusion: The role of labor lessons in the formation of engineering thinking among schoolchildren is fundamental to the modernization of education and the preparation of future generations for a rapidly changing world. By linking theory with practice, these lessons provide an environment where learners can not only acquire manual skills but also cultivate the ability to think critically, solve complex problems, and innovate. Through hands-on projects, students learn to design, construct, test, and evaluate their ideas, processes that directly reflect the essential stages of engineering activity. Such experiences shape their capacity for systematic analysis, logical reasoning, and adaptability, which are indispensable in both academic and professional contexts.

REFERENCES:

- 1. Kushakova, M. N., Akhmedov, B. A., Kushakova, M. S., & Umarova, D. R. Economic Characteristics and Principles of the Formation of the Transport Cluster in the Tourism Sector in the Conditions of the Digital Economy. *Sustainable Development of Transport*, 107.
- 2. Kadirova, Z. Z. (2022). Alisher Navoiyning nasriy asarlarida perifrazalar. *Monografiya*, *I*(1), 120.
- 3. Кадирова, 3. 3. (2019). Психолого-педагогические проблемы изучения понимания учебно-воспитательных ситуаций учителем. Профессионализм педагога: компетентностный подход в образовании, 1(1), 6-11.
- 4. Кадирова, О. Х., & Кадирова, З. З. (2022). Ўзбек терминологияси. *Журнал филологических исследований*, *1*(2), 156-160.
- 5. Akhmedov, B. A. (2025). Integrating ICT and artificial intelligence in teaching philological disciplines: a focus on machine translation of textual data. Экономика и социум, (6-1 (133)), 115-122.
- 6. Omarov, N., Omarov, B., Mamutov, Q., Kissebayev, Z., Anarbayev, A., Tastanov, A., & Yessirkepov, Z. (2024, October). Deep learning enabled exercise monitoring system for sustainable online education of future

