DEVELOPMENT OF TECHNOLOGY FOR OBTAINING SILICON-BASED COMPOSITE MATERIALS

Inomdjon Azizov Kodirdjonovich

Almalyk branch of Tashkent State Technical University, Almalyk, Uzbekistan

Abstract

This article investigates the synthesis and properties of silicon nitride (Si₃N₄)-based ceramic materials. Owing to their excellent thermal stability, wear resistance, and high mechanical strength, these materials are widely used in aerospace, automotive, and electronic industries. The article presents various synthesis methods, including carbothermal reduction and self-propagating high-temperature synthesis (SHS), and evaluates the impact of microstructure on performance.

Keywords

Silicon nitride, ceramic composites, synthesis, microstructure, SHS, high-temperature materials

РАЗРАБОТКА ТЕХНОЛОГИИ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ КРЕМНИЯ

Иномджон Азизов Кодирджонович

Алмалыкский филиал Ташкентского государственного технического университета, Алмалык, Узбекистан

Аннотация

В данной статье исследуются синтез и свойства керамических материалов на основе нитрида кремния (Si_3N_4). Благодаря своей превосходной термической стабильности, износостойкости и высокой механической прочности эти материалы широко используются в аэрокосмической, автомобильной и электронной промышленности. В статье представлены различные методы синтеза, включая карботермическое восстановление и самораспространяющийся

высокотемпературный синтез (СВС), а также оценивается влияние микроструктуры на эксплуатационные характеристики.

Ключевые слова

Нитрид кремния, керамические композиты, синтез, микроструктура, CBC, высокотемпературные материалы

Introduction

Advanced ceramic materials based on silicon nitride (Si₃N₄) have emerged as prominent candidates in high-temperature applications. Their superior characteristics, including high fracture toughness, thermal shock resistance, and chemical inertness, have led to their application in extreme environments such as gas turbines, automotive engines, and electronics.

Synthesis Methods of Silicon Nitride Powder

The most commonly used synthesis techniques for Si₃N₄ powders include direct nitridation of silicon, carbothermal reduction of silica, and SHS. Each method offers unique advantages in terms of purity, morphology, and cost-effectiveness.

Table 1: Properties of Si₃N₄ Powders from Various Methods

Method	Surface Area (m²/g)	Oxygen Content (%)	Carbon Content (%)	α/β Ratio
Direct Nitridation	8-25	1.0-2.0	0.1-0.4	95%
Carbotherma 1 Reduction	4.8	1.6	0.9-1.1	95%
Gas Phase Reduction	3.7	1.0	-	95%
Diimide Synthesis	10	1.4	0.1	85%

Temperature (K)
2150
2100
2050
2000
1950
1 2 3 4 5 6
Nitrogen Pressure (MPa)

Figure 1: Adiabatic Combustion Temperature vs. Nitrogen Pressure

Conclusion

Silicon nitride-based ceramics exhibit a promising combination of properties that make them suitable for high-performance applications. Future advancements in synthesis technology and microstructural control will further enhance their usability in industrial sectors.

Literature Review

Numerous studies have explored the behavior of Si_3N_4 ceramics under various synthesis and processing conditions. According to Samsonov et al., the addition of rare earth oxides can significantly enhance sinterability and improve the high-temperature mechanical performance. Moreover, researchers have investigated the role of microstructural control in determining fracture toughness and thermal conductivity. Grain boundary phases and $\alpha \rightarrow \beta$ phase transformation mechanisms are particularly critical in this regard.

Microstructural Considerations

The performance of Si₃N₄-based ceramics depends strongly on their microstructure, including grain size, grain shape, and the distribution of secondary phases. Typically, elongated β-Si₃N₄ grains form during sintering, providing a toughening mechanism through crack deflection. The microstructure is influenced by sintering additives, particle size of the starting powder, and sintering temperature profile.

Applications of Si₃N₄ Ceramics

Silicon nitride ceramics are used in a variety of demanding environments. In the automotive sector, they are employed in turbocharger rotors, exhaust gas control valves, and engine components. Aerospace applications include turbine blades, thermal shields, and structural components. In electronics, Si₃N₄ serves as a substrate material due to its dielectric properties and mechanical strength. Table 2 outlines key application domains and their functional requirements.

Table 2: Applications of Silicon Nitride Ceramics

Sector	Application		Requireme	nts
Automotive	Turbocharger rotor	rs.	Thermal resistance,	shock low weight
Aerospace	Turbine blades		High-temperature stability, toughness	
Electronics	Substrates insulators	and	High strength, rigidity	dielectric mechanical
Manufacturing	Cutting tools		Wear hardness	resistance,

Future Outlook and Research Directions

Ongoing research aims to develop cost-effective and energy-efficient synthesis routes for Si₃N₄ materials. The integration of advanced sintering technologies such as microwave and spark plasma sintering is expected to yield better control over grain growth and phase formation. Additionally, composite designs involving SiC, Al₂O₃, or graphene reinforcements may further enhance mechanical and thermal properties.

Sintering Techniques and Additives

Sintering is a critical process in the fabrication of dense silicon nitride ceramics. Techniques such as pressureless sintering, hot pressing, and hot isostatic pressing (HIP) are commonly employed. Additives like Y₂O₃, Al₂O₃, and MgO promote liquid-phase sintering by reacting with the SiO₂

layer on Si₃N₄ particles to form transient liquid phases. The nature of this phase and its viscosity significantly influence grain growth and the final microstructure.

Mechanical Properties of Si₃N₄ Ceramics

The mechanical properties of Si₃N₄ ceramics are primarily influenced by their density, grain size, and phase distribution. Typical values include flexural strength exceeding 800 MPa, fracture toughness of 6–8 MPa·m^{1/2}, and hardness values above 1500 HV. These characteristics make them ideal for structural applications under mechanical stress.

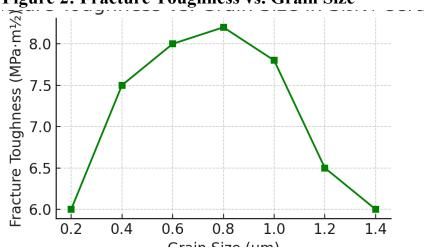


Figure 2: Fracture Toughness vs. Grain Size

Final Remarks

The integration of advanced synthesis and sintering technologies with intelligent additive selection paves the way for the future of silicon nitride ceramics. These materials hold potential in next-generation applications ranging from aerospace propulsion to microelectronic substrates, supported by continuous research and development efforts.

References

- 1. Samsonov G.V., 'High Temperature Ceramic Materials', Moscow, 1982.
- 2. Kazakov V.K., 'Synthesis and Sintering of Silicon Nitride', Journal of Advanced Ceramics, 2005.
- 3. Kostanovskii A.V., et al., 'Microstructure Evolution in Sintered Si₃N₄ Ceramics', Ceram. Int., 2010.

- 4. Spivak I.I., 'Modern Ceramic Composites', Springer, 2015.
- 5. Zhuravleva N.V., 'Thermal Conductivity in Silicon Nitride Ceramics', Materials Science Reports, 2018.
- 6. Andrievski R.A., 'Ceramic Processing Methods', Russian Journal of Applied Chemistry, 2014.
- 7. Lukin E.S., 'Effect of Additives on the Microstructure of Silicon Nitride', Int. J. of Ceramic Eng., 2011.
- 8. Nazarchuk A.A., 'Mechanical Behavior of Si₃N₄-Based Composites', J. Mat. Sci. Technol., 2017.
- 9. Evseev A.V., 'Fracture Mechanisms in Advanced Ceramics', Ceramics and Composites, 2013.
- 10. Karimov S.A., 'Technological Aspects of SHS in Ceramic Powders', Uzbekistan Technical Review, 2022.