Рустамов Насим Тулегенович,

д.т.н.,проф., МКТУ им. Х.А. Яссавий,

Республика Казахстан

Исроилов Фахриддин Мурадкасимович

доцент, Джизакский политехнический институт,

Республика Узбекистан,

Мухаммадиев Бахтияр Сапарович

преп, Джизакский политехнический институт, Республика Узбекистан,

Шарофов Хасан Фуркат угли.

Магистрант, Джизакский политехнический институт, Республика Узбекистан,

КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ ФРАКТАЛЬНЫХ СОЛНЕЧНЫХ КОЛЛЕКТОРОВ.

Аннотация: в статье рассмотрено методические основы определения тепловых характеристик и увеличения коэффициента полезного действия (КПД) фрактальных солнечных коллекторов (ФСК) работающих за счет использования солнечных лучей при низких температурах окружающей среды при низких температурах окружающей среды.

Ключевые слова: фрактальный солнечный коллектор (ФСК), коэффициент полезного действия (КПД), баланс мощностей (БМ), тепловая потеря, солнечная энергия, теплоемкость, фокус, фрактал, абсорбер, температура, теплоноситель, объект, солнечное излучение, параметр, гелиосистема, мощность, площадь, электродвижущая сила (ЭДС).

Rustamov Nasim Tulegenovich,

Doctor of Technical Sciences,.

Yassavi Technical University, Republic of Kazakhstan

Isroilov Fakhriddin Murat Kasimovich

Jizzak polytechnic institute, Republic of Uzbekistan,

Muhammadiev Bakhtiyar Saparovich

Jizzak Polytechnic Institute, Republic of Uzbekistan,

Sharofov Hassan Furkat ugli.

EFFICIENCY OF FRACTAL SOLAR COLLECTORS.

Abstract: the article discusses the methodological foundations for determining the thermal characteristics and increasing the efficiency of fractal solar collectors (FGCS) operating through the use of sunlight at low ambient temperatures at low ambient temperatures.

Keywords: fractal solar collector (FSC), efficiency, power balance, heat loss, solar energy, heat capacity, focus, fractal, absorber, solar radiation, temperature, coolant, object, parameter, solar system, power, area, electromotive force (EMF).

Введение. Абсорберы солнечного излучения являются одним из основных элементов конструкции коллекторов, от которых зависят как энергетические, так и экономические показатели солнечных систем теплоснабжения. Применяемые в настоящее время конструкции абсорберов выполняются в большинстве коллекторов из металлов. При этом, как правило, применяются дорогие виды материалов – медь, нержавеющая сталь, реже – менее дорогие, например алюминиевые сплавы. Это удорожает коллекторы и увеличивает их вес. Возможности по снижению их стоимости конструкций, практически Создание исчерпаны. основанных на использовании полимерных материалов, является перспективным дальнейшего развития низкотемпературных направлением солнечных технологий [1]. На сегодняшний день повышение коэффициента полезного действия (КПД) водонагревательных солнечных коллекторов приобретает актуальный характер.

Целью работы является увеличения эффективности использования солнечных лучей, увеличения коэффициента полезного действия (КПД) при низких температурах окружающей среды.

Метод решения. Ha кафедре электроинженерия МКТУ при им.Х.А.Яссавий разработана и запатентована несколько принципиально новых по геометрической форме фрактальных солнечных коллекторов. С целью снижения теплопотерь и повышения энергоэффективности солнечных коллекторов разработана оптимальная конструкция солнечного коллектора, где абсорберы расположены фрактально на параболический концентрат. Фрактальный солнечный коллектор абсорбером ИЗ полимерных материалов, выполненных в виде расположенных этажном подобных круговых труб на тарелочной апертурной площади (рис.1) [2]. Апертурная площадь такого коллектора служит отражателем прошедших через и мимо абсорберов солнечных лучей. Отраженные лучи дополнительно нагревает коллекторные трубы, расположенные в виде фракталов. Что интересно, отраженные солнечные лучи фокусируются на четвертом фрактале, тем самым на этом фрактальном солнечном коллекторе (ФСК) солнечные лучи используется дважды.

Этот вид гелиоустановки представляет собой батарею параболических тарелочных зеркал (схожих формой со спутниковой тарелкой), которые фокусируют солнечную энергию на приемники, расположенные в фокусной точке (четвертый фрактал) тарелочной общей площади.

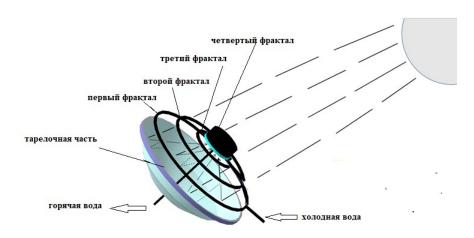


Рис.1. Общий вид фрактального солнечного коллектора.

Тепловая эффективность или коэффициент полезного действия (КПД) плоских солнечных водонагревательных коллекторов, как и для других

солнечных тепловых установок, определяется из отношения полезно полученной энергии (Q_{non}) падающего на фронтальную поверхность суммарного солнечного излучения (Q_{noo}) [3]:

$$\eta = \frac{Q_{\text{пол}}}{Q_{\text{пол}}} \tag{1}$$

В свою очередь значение (Q_{non}) определяется расходом (G) и разностью температур нагреваемой в данном коллекторе воды ($\Delta t = t_{ebl} - t_{ex}$), т.е.

$$Q_{non} = GC_p (t_{ebix} - t_{ex}), \tag{2}$$

где:

 C_p — удельная теплоемкость теплоносителя (например для воды) C_p =4,1868 кДж/ (кг°С);

 $t_{\rm Gblx}$ и $t_{\rm ex}$ - соответственно температуры горячего теплоносителя на выходе из коллектора и исходного холодного теплоносителя на входе в коллекторе;

$$G = G_{yo} A \tag{3}$$

где:

 $G_{yд}$ — удельный (т.е. отнесенный к единице площади фронтальной поверхности коллектора) расход нагреваемой воды через данный коллектор; A — площадь абсорвера.

Значение Q_{noo} в отношении (1) определяется из выражения

$$Q_{no\partial} = q_{na\partial} A \tag{4}$$

где

$$\mathbf{q}_{\text{под}} = \mathbf{q}_{noo}^{np} + \mathbf{q}_{nao}^{out} \tag{5}$$

 $q_{\text{под}}$ - поверхностная плотность потоки суммарного излучения, падающего на фронтальную поверхность коллектора;

 $q_{noo}^{np}+q_{nao}^{oud}$ - соответственно поверхностные плотности прямого (пр) и диффузного (диф) солнечного излучения, падающего на фронтальную поверхность коллектора.

Подставляя (2), (3) и (4) в отношении (1) получим

$$\eta = \frac{C_{yo}C_p(t_{obx} - t_o)}{q_{noo}} \tag{6}$$

На основе формулы (6) ниже приведем метод оценки коэффициента полезного действия (КПД) для фрактальных солнечных коллекторов. Из свойств фрактальных объектов для фрактальном солнечном коллекторе (ФСК) зададим фрактальную рзмерность D [4] для абсорберов.

Так в общем случае если коэффициента полезного действия (КПД) для первой фракты η произвольного тора степенным образом зависит от масштаба измерения δ :

$$\eta = P \cdot \delta^{1-D}. \tag{7}$$

Здесь Р - размерный множитель, свой для каждой кривой,

D - фрактальная размерность.

При этом очевидно, что как вся абсорберная площадь, так и любой общей площадь ФСК обладают одной и той же фрактальной размерностью. Такое свойство приписывает свойство так называемое самоподобие (скейлинг, масштабная инвариантность). Самоподобие означает, что как все абсорберная площадь, так и любой ее участок (общая площадь абсорбера) обладают одной и той же фрактальной размерностью. Если η увеличить в λ раз, то для измерения новой длины $\lambda \eta$ достаточно использовать масштаб, равный $\lambda \delta$, т.е.

$$\lambda \eta = P \cdot (\lambda \delta)^{1-D}$$
. (8)

Исходя из этих соображений, если посмотреть на конструкцию ФСК (рис.1), то видно, что абсорберы расположены иерархически самоподобными торами. Если мы берем масштабом размеры первого фрактала, откуда вводится холодная жидкость, то при заданном D и P_i , i- число фракталов, КПД второго фрактала определяется по формуле (8). Тогда η :

для второго фрактала $\eta_2 = P_i \cdot \eta^{I-D}$, для третьей фрактала $\eta_3 = P_i \cdot (\eta^{I-D})^{I-D}$.

Для ФСК коэффициент полезного действия или тепловая эффективность будет равным η_3 . Площадь солнечного коллектора в описании различных солнечных коллекторов производители часто относят мощность, производительность и другие технические данные к определенной площади солнечного коллектора. Это очень важный момент для анализа всей гелиосистемы, поскольку это позволяет правильно охарактеризовать тот или иной солнечный коллектор и позволяет корректно сравнивать показатели. Зачастую в литературе и техническом описании продукта, производителем не всегда точно указывается какая же площадь имеется ввиду для некоторых данных.

В данной статье мы опишем каждую *площадь солнечного коллектора*, это поможет разобраться во многих параметрах и позволит более корректно сравнивать данные разных коллекторов.

Коэффициент тепловых потерь коллекторов солнечной энергии является основной величиной, определяющей мощность потерь энергии из коллектора в окружающую среду:

$$\Delta P = A\Delta t U_L \tag{9}$$

В формуле (9) фигурирует удельное значение коэффициента тепловых потерь, размерность которого Вт/м². По значению этого коэффициента сравниваются коллекторы солнечной энергии, имеющие разные конструкции и площади апертуры. Этот коэффициент учитывает потери тепла через прозрачное и непрозрачное ограждение коллектора и через уплотнения между ними.

Для стационарного режима работы коллектора уравнение баланса мощностей (БМ) можно записать в следующем виде:

$$\Omega I - U_L(\bar{t}_{ab} - t_a) = Gc_w(t_o - t_i) / A$$
(10)

где U_L - полный коэффициент тепловых потерь солнечного коллектора, $B\tau/K$, t_0 -температура абсорбер с водой в начале интервала нагрева коллектора солнечным излучением,

 ${}^{\rm O}{\rm C}, t_{\rm a}$ - температура окружающей среды,

 ${}^{\mathrm{o}}\mathrm{C}, t_{\mathrm{i}}$ - температура воды на входе солнечного коллектора,

^оС, А-расчётная площадь апертуры солнечного коллектора, м²,

G-массовый расход теплоносителя, кг/с,

Правая часть уравнения (10) является полезной мощностью коллектора, а левая — разностью между мощностью поглощаемой абсорбером солнечной энергии и тепловым потоком от него в окружающую среду. Для ФСК такое уравнение выглядит следующим образом:

$$(\Omega IA - U_L^I \cdot k) A_I = G_I C^I_w (t_0 - t_i)$$
 для первой факты у- е БМ (11)

$$(\Omega(I + U_L^I) - U^{L2} \cdot k) A_2 = G_2 C_w^2 (t_0 - t_i)$$
 для второй факты у—е БМ (12)

$$(\Omega(I + U_L^I + U_L^2) - U_L^3 \cdot k)A_3 = G_3^{C_w} (t_0 - t_i)$$
 для третье факты у–е БМ (13)

Из (11), (12) и (13) находим уравнение баланса мощностей для ФСК:

$$\Omega IS + (\Omega A_2 + kA_1)U_L^I + (\Omega A_3 - A_2k)^{UL} 2 - {}_{k}A_3^{UL3} = (G_1 C_w^1 + G_2 C_w^2 + G_3 C_w^3)(t_0 - t_i)$$
(14)

где: $S = (A_1 + A_2 + A_3)$ – общий площадь абсорбера ФСК.

Уравнение (14) будет уравнением мощностей для солнечного фрактального коллектора.

Здесь основной вклад в погрешность обусловлен неточностью определения \mathbf{U}_{L} и t_{ab} , где:

 U_{L} -полный коэффициент тепловых потерь солнечного коллектора, $B\tau/K$,

 t_{ab} - среднее за интервал времени $\Delta \tau$ значение температуры абсорбера, ${}^{\rm O}{\rm C}$.

Но также при конструировании ФСК желательно установить температурные датчики так как измерение температуры может иметь решающее значение. Датчики температуры являются жизненно важным

компонентом систем измерения температуры, которые обеспечивают точный мониторинг температуры для оптимального управления процессом [5]. Изменение температуры преобразователя вызывает изменение ЭДС. При увеличении температуры возрастает активное сопротивление первичных обмоток и полное их сопротивление. Это уменьшает первичный ток и ЭДС [6].

Деформация, то есть взаимное смещение внутренних частей материала, может возникать из-за различных механизмов, таких как напряжение, при приложении внешних сил к массивному материалу (например, гравитация) или к его поверхности (например, контактные силы, внешнее давление или трение) [7].

датчики или первичные преобразователи Первичные приборы, преобразования измеряемой ДЛЯ непосредственного предназначены величины в другую величину, удобную для измерения или использования. Выходными сигналами первичных приборов, датчиков являются как правило унифицированные стандартизованные сигналы, В противном случае используются нормирующие преобразователи [8].

Интеллектуальный датчик способен самостоятельно подстраиваться под условия эксплуатации и непрерывно регулировать свою чувствительность в целях достижения максимальной эффективности. Своим интеллектом датчики обязаны микропроцессорным технологиям [9,10].

Выводы. Рассмотренные методические основы определения тепловых характеристик ФСК подтверждается по результатам испытаний в вынужденном режиме нагрева солнечным излучением при нулевом расходе воды. При этом испытания должны проводится при подходящих внешних условиях по стабильности солнечного излучения и температуре окружающей среды. Важным является также то, что с целью уменьшения влияния неточности знания коэффициента тепловых потерь коллектора абсорбер заполняется водой с температурой более низкой, чем температура

окружающей среды, при котором предполагается проведение экспериментов. Основными величинами, влияющими на точность определения Ω являются: свойствах данные теплофизических материала труб абсорбера, продолжительность интервала нагрева, стабильность внешних условий облучения коллектора, направление (интенсивность сила температура окружающей среды). Поэтому при планировании эксперимента достаточно точный прогноз погоды и правильно его важно иметь использовать.

Использованная литература.

- 1. Ермуратский В.В. ,Постолатий В.М., Коптюк Э.П. Перспективы применения в Республике Молдова солнечных нагревателей воды санитарнобытового назначения. Проблемы региональной энергетики. 2009,№2, http://ieasm.webart.md/data/m71_2_107.doc.
- 2. Рустамов Н.Т., Мейрбеков А.Т., Корганбаев Б.Н. Фрактальный солнечный коллектор. РК, Патент № 2639 на полезную модель.
- 3. N.R. Avezova, R.R. Avezov, N.T. Rustamov, A. Vakhidov, Sh.I. Suleymanov. Resource indexes of flat solar water-heating collectors in hot-water supply systems: 4 Specific collector thermal yield and efficiency. Journal <u>Applied Solar Energy</u>, 2013, <u>Volume 49</u>, <u>Issue 4</u>, pp 202-210.
- 4. Балханов В.К. Ведение в теорию фрактальных исчисления. Улан-Удэ.: Изд. Бурятского гос. ун-та, 2001. 58 с.
- 5. Мухаммадиев Б. С. ИСПОЛЬЗОВАНИЯ ПРЕОБРАЗОВАТЕЛЕЙ В ПРОМЫШЛЕННОЙ АВТОМАТИЗАЦИИ //INNOVATIVE DEVELOPMENTS AND RESEARCH IN EDUCATION. -2024. T. 3. №. 34. С. 183-190.
- 6. Мухаммадиев Б. С. Разработка конструкций трансформаторных преобразователей механических напряжений с улучшенными

- метрологическими характеристиками //E Conference Zone. 2022. С. 122-125.
- 7. Мухаммадиев C. ПРЕОБРАЗОВАНИЯ МЕХАНИЧЕСКИХ Б. НАПРЯЖЕНИЙ \mathbf{C} ПОМОЩЬЮ ДАТЧИКОВ В РАЗЛИЧНЫЕ ЗНАЧЕНИЯ //MODELS AND METHODS FOR INCREASING EFFICIENCY OF INNOVATIVE RESEARCH. – 2024. – T. 4. – №. 40. – C. 203-210.
- 8. Мухаммадиев Б. С. ВИДЫ ПРЕОБРАЗОВАТЕЛЕЙ МЕХАНИЧЕСКИХ ВЕЛИЧИН //Journal of new century innovations. 2024. Т. 53. №. 4. С. 18-23.
- 9. Мухаммадиев Б. С. ОСНАЩЕНИЕ ПРОИЗВОДСТВА СОВРЕМЕННЫМИ ИНТЕЛЛЕКТУАЛЬНЫМИ СРЕДСТВАМИ ИЗМЕРЕНИЙ //SCIENTIFIC APPROACH TO THE MODERN EDUCATION SYSTEM. -2024. T. 3. №. 31. С. 44-52.
- 10. Мухаммадиев Б. С. НЕЛИНЕЙНОСТЬ СТАТИЧЕСКОЙ ХАРАКТЕРИСТИКИ ПРЕОБРАЗОВАТЕЛЕЙ МЕХАНИЧЕСКИХ НАПРЯЖЕНИЙ //Экономика и социум. 2024. №. 2-1 (117). С. 1203-1210.