ON A FAMILY OF CIRCLE HOMEOMOHPHISMS WITH ONE BREAK POINT

Karshiboev Khayrullo Kilichovich

Candidate of Physical and Mathematical Sciences,
Associate Professor, Head of Department of Higher Mathematics,
SamJES

Abstract. In this article, we study a one-parameter family of circle homeomorphisms with one break point. It is proved that in the case of a rational rotation number the number of periodic trajectories does not exceed two.

Key words: circle homeomorphism, renormalization, rotation number.

О СЕМЕЙСТВЕ КРУГЛЫХ ГОМЕОФИЗМОВ С ОДНИМ ТОЧКОЙ РАЗЛОМА

Каршибоев Хайрулло Киличович

Кандидат физико-математических наук, доцент, заведующий кафедрой высшей математики, Самаркандский институт экономики и сервиса

Аннотация. В этой статье мы изучаем однопараметрическое семейство гомеоморфизмов окружности с одной точкой излома. Доказано, что в случае рационального числа вращения число периодических траекторий не превышает двух.

Ключевые слова: гомеоморфизм окружности, перенормировка, число вращения.

Consider a one-parameter family of mappings of the unit circle [1]:

$$T_{\Omega}x = \{f(x, \Omega)\}, \quad x \in S^1 = [0, 1), \ \Omega \in [0; 1]$$

where the bracket $\{\cdot\}$ - denotes the fractional part of the number, and $f(x,\Omega)$ -satisfies the following conditions:

a) at a fixed Ω , $f(x; \Omega)$ - continuous monotonically increasing function;

b) f(0;0) = 0, $f(x+1;\Omega) = f(x;\Omega) + 1$, for anyone $x \in R^1$;

c)
$$\frac{\partial f(x;\Omega)}{\partial \Omega} > const > 0;$$

d) $t_0:[0;1] \rightarrow [0;1]$ continuous curve;

e) for every fixed
$$\Omega \in [0;1], \frac{\partial f(x;\Omega)}{\partial x} > const > 0;$$
 for

 $\forall x \in S^1 \setminus \{t_0(\Omega)\}, f(x; \Omega) \in C^{2+\varepsilon}(S^1 \setminus \{t_0(\Omega)\}), \text{ at some } \varepsilon > 0 \text{ and}$

$$\frac{f_{-}'(t_0(\Omega),\Omega)}{f_{+}'(t_0(\Omega),\Omega)} = c(\Omega) \neq 1.$$

Let us ρ_{Ω} denote the number of rotations corresponding to, responsible $T_{f_{\Omega}}[2]$:

$$\rho_{\Omega} = \lim_{n \to \infty} \frac{f^{(n)}(x, \Omega)}{n}$$

From the d(r) = e(r) conditions it follows that $T_{\Omega}x$ for each fixed value of the parameter has only one break point $t_0(\Omega)$. The number $c(\Omega)$ is called the break point T_{Ω} . Everywhere below we will denote by the $f^{(n)} = n$ st superposition of the function f. It is easy to see that ρ_{Ω} monotonically (not strictly) depends on the parameter Ω . Note that each rational $\rho = \frac{p}{q}$ corresponds to a non-degenerate segment (values Ω such that $\rho_{\Omega} = \frac{p}{q}$, while irrational ρ corresponds only to Ω).

Let
$$A = \left(\frac{p_1}{q_1}, \frac{p_2}{q_2}\right) \subset (0, 1)$$
 - be the Faria interval of the n -nd level [1]:

- 1) $p_2q_1 p_1q_2 = 1$
- 2) All rational numbers inside the interval A have the form $\frac{kp_1 + lp_2}{kq_1 + lq_2}$. Rational number with minimum denominator is $\frac{p_1 + p_2}{q_1 + q_2}$.

We choose an arbitrary point x_0 on the circle and a segment of the trajectory of this point $\{x_i = T_{\Omega}^i x_0, 0 \le i < q_1 + q_2\}$. Denote $\Delta_0^{(1)}$ and $\Delta_0^{(2)}$ segments $[x_0, x_{q_1}]$ and $[x_{q_2}, x_0]$, respectively. We also denote the images of these segments under the action of T_{Ω} by $\Delta_i^{(1)}$ and $\Delta_j^{(2)}$ [1]:

$$\Delta_i^{(1)} = T^i \Delta_0^{(1)}, \quad \Delta_j^{(2)} = T^i \Delta_0^{(2)}$$
.

The following assertion was proved in [1] and works without any changes in our situation. **Jemma 1.** Suppose $\rho(T) \in \left(\frac{p_1}{q_1}, \frac{p_2}{q_2}\right)$. Trajectory segment $\{x_i = T_\Omega^i x_0, 0 \le i < q_1 + q_2\}$ divides the circle into non-intersecting segments $\Delta_i^{(1)}, \ 0 \le i < q_2 \ \text{and} \ \Delta_j^{(2)}, \ 0 \le j < q_1$. Denote the constructed partition $\xi(A, x_0)$. Let's put $\upsilon = \upsilon a r_{S^1} \ln f' < \infty, \ \overline{\upsilon} = \upsilon + |\ln f'(x_0 - 0) + \ln f'(x_0 + 0)|,$ $q = \max(q_1, q_2), \ p = \max(p_1, p_2)$. Consider an arbitrary trajectory $y_i = T_\Omega^i y_0, \ y_0 \in S^1$ such that $y_i \ne x_0 = 0, \ 0 \le i < q_2$.

Лемма 2. Suppose
$$\rho(T) \in \left(\frac{p_1 + p_2}{q_1 + q_2}, \frac{p}{q}\right)$$
 or $\rho(T) = \left(\frac{p}{q}\right)$. Then
$$e^{-\overline{\upsilon}} \leq \prod_{i=0}^{q-1} f'(y_i) \leq e^{\overline{\upsilon}}.$$

Let $A_n = \left(\frac{p_1}{q_1}, \frac{p_2}{q_2}\right)$ be a Farey interval of rank n-[1], and $A_m, m < n$ be some Farey interval of rank m containing A_n . Let $\rho(T) \in A_n$. Let's choose Δ_n arbitrary element of partition $\xi(A_m, t_0)$ containing Δ_n . Let's denote by $|\Delta|$.

Лемма 3. Let's put $\lambda = (1 + e^{-\overline{\nu}})^{-\frac{1}{2}} < 1$.

$$|\Delta_n| \le const\lambda^{n-m} |\Delta_m|, |\Delta_n| \le const\lambda^n.$$

Let the continued fraction expansion of ρ be of the form $\rho(f(x,\Omega)) = \frac{p}{q} = [k_1, k_2, ..., k_n], k_n \ge 2.$

Let's designate $I(\frac{p}{q})$ the segment of the value of the parameter Ω such that $\rho(\Omega) = \frac{p}{q}$. Fix some $\Omega \in I(\frac{p}{q})$ and denote $f = f_{\Omega}$, $T_f = T_{f_{\Omega}}$. For a rational rotation number of $\rho(\Omega) = \frac{p}{q}$, there always exists at least one periodic trajectory of period q. Let $\{y^{(i)}, 0 \le i \le q - 1\}$ be an arbitrary periodic trajectory. Let $[y_1, y_2]$ denote the segment formed by the trajectory $\{y^{(i)}, 0 \le i \le q - 1\}$ and containing the singular point t_0 . Let's move on to renormalized coordinates:

$$x = y_2 + (y_1 - y_2)z$$

and define the function corresponding to T_f^q in the renormalized coordinate system:

$$\overline{f}(z) = \frac{1}{y_1 - y_2} [T_f^q(y_2 + (y_1 - y_2 z)) - y_2], z \in [0, 1].$$

Denote by d the renormalized coordinate of the point t_0 :

$$d = (t_0 - y_2)/(y_1 - y_2)$$

and define the function $F_d(z)$, $z \in [0, 1]$:

$$F_d(z) = \begin{cases} \frac{zc}{d(1-c^2) + c^2 + z(c-1)}, & z \in [0, d] \\ \frac{d(1-c^2) + zc^2}{d(1-c^2) + c + zc(c-1)}, & z \in [d, 1] \end{cases}$$

Theorem 1. There is a constant $c_3 > 0$ such that

$$\left\| \overline{f}(z) - F_d(z) \right\|_{C^2([0,1]\setminus \{d\})} \le c_3 \lambda^{n\varepsilon}. \tag{1}$$

Proof. Consider the partition of the circle generated by the trajectory $(y^{(i)}, 0 \le i \le q-1)$. Denote $\Delta_0 = [y_1, y_2], \ \Delta_i = T_\theta^i \Delta_0, 1 \le i \le q-1$. Obviously $T_\theta^q \Delta_0 = \Delta_0$. It is not difficult to show [1] that $|\Delta_i| \le const \lambda^n, 1 \le i \le q-1$. Function $\overline{f}(z)$ can be represented as a superposition of two functions f_1 and f_2 , corresponding to mappings $T_\theta : \Delta_0 \to \Delta_1, T_\theta^{q-1} : \Delta_1 \to \Delta_q = \Delta_0$. Let us determine the relative coordinates inside the segments Δ_i :

$$x = T_f^i y_2 + (T_f^i y_1 - T_f^i y_2)z$$
.

Then the functions f_1 and f_2 can be written as:

$$f_1(z_0) = \frac{1}{(T_\theta y_1 - T_\theta y_2)} [T_\theta (y_2 + (y_1 - y_2)z_0) - T_\theta y_2]$$

$$f_2(z_1) = \frac{1}{y_1 - y_2} [T_\theta^{q-1} (T_\theta y_2 + (T_\theta y_1 - T_\theta y_2)z_1) - y_2]$$

Wherein

$$\overline{f}(z) = f_2(f_1(z)).$$
 (2)

In [1], it was proved

$$\left\| f_2(z_1) - \frac{Mz_1}{1 + z_1(M - 1)} \right\|_{C^2([0, 1])} \le \operatorname{const} \lambda^{n\varepsilon}$$
 (3)

where
$$\ln M = \sum_{i=1}^{q-1} \int_{\Delta_i} \frac{f''(y)}{2f'(y)} dy = \left(\sum_{i=0}^{q-1} \int_{\Delta_i} \frac{f''(y)}{2f'(y)} dy\right) - \int_{\Delta_0} \frac{f''(y)}{2f'(y)} dy = \ln c - \int_{\Delta_0} \frac{f''(y)}{2f'(y)} dy$$
 (4)

Insofar as $\left|\int_{\Delta_0} \frac{f''(y)}{2f'(y)} dy\right| \le const \lambda^n$, we get
$$\left\|f_2(z_1) - \frac{cz_1}{1 + z_1(c-1)}\right\|_{C^2(\Omega \setminus I)} \le const \lambda^{n\varepsilon}$$
 (5)

It is easy to see that function $f_1(z_0)$ is close to piecewise linear function $f_d(z_0)$, where

$$f_d(z_0) = \begin{cases} \frac{z_0}{c^2(1-d)+d}, & z_0 \in [0,d] \\ \frac{d(1-c^2)+z_0c^2}{c^2(1-d)+d}, & z_0 \in [d,1] \end{cases}$$
 (6)

Since $|\Delta_0| \le const \lambda^n$ is valid estimate:

Using (2)-(6) we obtain (1).

Theorem 1 implies that $\overline{f}(z)$ is convex at 0 < c < 1 and concave at c > 1. Indeed, by direct calculation it is easy to verify that

$$\frac{d^2}{dz^2}F_d(z) \ge 2c^2(1-c), \ z \ne d \quad \text{при } 0 < c < 1$$

$$\frac{d^2}{dz^2}F_d(z) \le -\frac{2}{c^3}(c-1), \ z \ne d$$
 при $c > 1$.

Let's put

$$N = \left[\frac{1}{\varepsilon \ln \lambda} \ln(\frac{1}{c^3} | c - 1 | \min(\frac{1}{c^3}, c^2)) \right]$$

Denote the interval $I(\frac{p}{q}) = \left[\Omega_1(\frac{p}{q}), \Omega_2(\frac{p}{q})\right]$.

Let's put $\int_{0 \le \frac{p}{q} \le 1}^{J = [0, 1] \setminus \bigcup_{0 \le \frac{p}{q} \le 1} I(\frac{p}{q})}$. Denote the Lebesgue measure on [0, 1] by λ

We now formulate the main results of our work.

Theorem 2. For all n > N, the following statements are true:

"Экономика и социум" №3(118) 2024

- (a) if $\Omega = \Omega_1(\frac{p}{q})$ or $\Omega = \Omega_2(\frac{p}{q})$, then T_{Ω} has a unique periodic trajectory of period q;
- (c) at $\Omega \in \left(\Omega_1(\frac{p}{q}), \Omega_2(\frac{p}{q})\right)$ there are equal to two periodic trajectories of period q.

Theorem 3. The Lebesgue measure of the set J is equal to zero, i.e. $\lambda(J) = 0$.

References

- 1. K. M. Khanin and E. B. Vul. Circle Homeomorphisms with weak Discontinuities. Advances in Soviet Mathematics, v. 3, 1991, p. 57-98.
- 2. I.P. Kornfeld, Ya.G. Sinai, S.V. Fomin. Ergodic theory. –M. Science, 1980.
- 3. H.K. Karshiboev. Behavior of renormalizations of ergodic mappings of a circle with a break// Uzbek mathematical journal. Tashkent, 2009. No. 4. p.82-95.