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Abstract. In this article, we study a one-parameter family of circle
homeomorphisms with one break point. It is proved that in the case of a rational
rotation number the number of periodic trajectories does not exceed two.

Key words: circle homeomorphism, renormalization, rotation number.

O CEMEHUCTBE KPYIJIBIX TOMEO®HN3MOB C OJJHUM TOYKOHN
PA3JIOMA

Kapmub6oes Xaiipyio KuinuuoBuu

Kanaunar ¢puzmko-MareMaTHIECKUX HayK,

JIOTIEHT, 3aBeAYyIONTUI KadeaIpoil BEICIICH MaTeMaTHKH,

CamapkaHJICKUM UHCTUTYT SKOHOMUKHU U CEpPBHUCA

AHHOTamuss. B 53TOM cTarbe MBI H3y4aeM OJIHONAPAMETPUYECKOE

CEMENCTBO roMeOMOP(PU3MOB OKPYKHOCTH C OJTHOM TOUKOM m3noma. /lokaszaHo,

YTO B CJly4yae pPAUUMOHAIBHOTO YHUCIA BpALICHHUS YHCIO MEPUOJIHYECKUX
TPACKTOPUI HE MPEBBIIIACT ABYX.

KiioueBble cioBa: romMeomMop@u3M OKPYKHOCTHU, TE€PEHOPMHUPOBKA,

YKUCJIO BpalllCHUA.

Consider a one-parameter family of mappings of the unit circle [1]:
Tox={f(x. )}, xeS'=[0.1), Qe[0;1]
where the bracket '} - denotes the fractional part of the number, and ./ (x.£2) -
satisfies the following conditions:

a) ata fixed €2. /(x: ) - continuous monotonically increasing function;
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b) f(0;0)=0, f(x+1Q)=7(x;€)+1, for anyone xeR';

> const > 0;

d) 1y :[0;1] > [0;1] continuous curve;

of (x;Q
e) for every fixed Q e[0:1], % > const > 0; for

Ve ST\ {1 ()}, £ Q) e CPTF (S {15(Q))), at some >0 and

S @) _ o

. )= 1.
S (15(€2),€2)

Let us »o denote the number of rotations corresponding to, responsible 77, [2]:

P = lim 7][(”)(}6’ Q)

n—>o0 n

From the 4)-e¢) conditions it follows that 7ox for each fixed value of the
parameter has only one break point 7(€2). The number <(€2)is called the break
point 7o . Everywhere below we will denote by the /" -» st superposition of the

function /. It is easy to see that ,o monotonically (not strictly) depends on the

parameter . Note that each rational /J=§ corresponds to a non-degenerate

segment (values Q such that ro =§ , while irrational £ corresponds only to Q ).

Let 4= [%, 5—2] (0, 1) - be the Faria interval of the 7 —nd level [1]:
192

1) p2a1— P92 =1
kpy +Ip,
kgy +1q;

2)  All rational numbers inside the interval 4 have the form

PP

ity

Rational number with minimum denominator is

We choose an arbitrary point Xy on the circle and a segment of the
trajectory of this point {x; =7Hx,,0<i<q, +¢,}. Denote A and A}’ segments
[xX0.%¢, 1 and [¥g,- X0l respectively. We also denote the images of these segments
under the action of 7o by A" and A} [1]:

(D _ipD AR i gD
AP =TIAY, AP =T'AP

"IkoHomMuka u coumym'' Ne3(118) 2024 www.iupr.ru



The following assertion was proved in [1] and works without any changes

in our situation. Jlemma 1. Suppose AT )E(ﬂ,%j. Trajectory segment
2

q
{x;=Thxg.0<i<q +q} divides the circle into non-intersecting segments
AP, 0<i<g, and A}, 0<j<q. Denote the constructed partition &(4, xo). Let's
put v=varg 1nf'<oo,5:u+\lnf’(x0 —0)+Inf(xg +0)|,
q =max(q),q>), p=max(p;, p2). Consider an arbitrary trajectory v, =Tbyo. o €S’
such that y; #xg =0, 0<i<gq;,

Jlemma 2. Suppose /?(T)E[M, pj or p(T)=[pj. Then
91792 9 q

Lt o
eV <TIf () se”,
i=0

Let 4, =[§1, ZzJ be a Farey interval of rank 7~ [1], and 4,,.m<n- be
1 92

some Farey interval of rank ' containing 4,. Let p(T) € 4,. Let's choose 2, -

arbitrary element of partition <(4,. %) containing 4,. Let's denote by |Al.

1
' - —
Jlemma 3. Let's put ; _j vy 2 .
‘ Ay |< const A" ‘ Ay | A, < constA"

Let the continued fraction expansion of £ be of the form

P(f (x, ©2)) :gz[kl,kz,.--,k,,,J,kn >2.
Let's designate / (f) the segment of the value of the parameter Q) such that
MQ)Z? . Fix some </ (g) and denote /=/a- Ty =Ty, . For a rational rotation

number of £(2)= ‘g, there always exists at least one periodic trajectory of period

q. Let {»”.0<i<q¢ -1} be an arbitrary periodic trajectory. Let [»1.72] denote the
segment formed by the trajectory {»”,0<i<q¢-1} and containing the singular
point 4. Let's move on to renormalized coordinates:

x=yy+(y =)z
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and define the function corresponding to 77 in the renormalized coordinate

system:

£ =T + (=22 = 3. zf0.1],

Y=

Denote by d the renormalized coordinate of the point % :

d=(ty—y2) (¥ = »2)

and define the function fy (=), z [0, 1]:

— . ze[0,d]
() = d(l—=c)+c¢” +z(c—-1)
dr= (1’(l—cz)+zc2
, zeld, 1]

d(l- cz) +c+zce(c—1)

Theorem 1. There is a constant ¢3 >0 such that
@ = Fa @ o pgayy S5 (1)

Proof. Consider the partition of the circle generated by the trajectory
(»?,0<i<q-1 . Denote Ay =[y;.3,1. A; =T)Ag. 1<i<g—1. Obviously 7A, =4, .
It is not difficult to show [1] that |A;|<constA”.1<i<g—1. Function /(=) can be
represented as a superposition of two functions /i and /2, corresponding to
mappings 7,:Ag > A 7§ A —>A,=A,. Let us determine the relative coordinates
inside the segments 4;:

x=Tjyy +(Tfy —T}y2)z .

Then the functions /iand f>can be written as:

1

fi(zg) = m[Te(h + (V1 —y2)z0) —Tpy]
htn= ! 8 s + o = Tyyz) 2]
Wherein
f(2)= f(/(2). )

In [1], it was proved

MZI
1+ 2, (M —1)

< const A" 3
C?([0.1]) ( )

J2(z1) —
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b () ot 7" /")

h IhM=3% [—Zdv= X [ —=dv |- | =——dv=Ilnc- [ Z——dv (4
where G270 S 2T 2w NI RS
() n
Insofar as AIO 5 f,(y)dy <const A" we get

fr(z) —— 1 < const "¢
2 G o oD con ®)

It is easy to see that function /1(zp) is close to piecewise linear function

fa(z0), where

62(1_“;)“/, 0 €[0, d]
Ja(z0)= d-cP) 4z 1 (0)
Zi-ayra 2

Since |Ag| < const A" is valid estimate:
Using (2)-(6) we obtain (1).
Theorem 1 implies that /(=) is convex at 0<c<l and concave at c>I.

Indeed, by direct calculation it is easy to verify that

2
52Fd(z)zzc2(1—c), z=d mpu 0<c<I
Z

d? 2
zZ C

Let's put

1 1 P B
N:[Slniln(?c—ﬂmm(c—yc ))]

Denote the interval / (5) = {Ql (5), Q, (Z)}

J =[0, 1]\ 2
-4 0; ‘4’ . Denote the Lebesgue measure on [0- 11 by 4

q

Let's put

<1

We now formulate the main results of our work.

Theorem 2. For all »> N, the following statements are true:
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(a) if :Ql(g) or Q=Qz(§) , then 7o has a unique periodic trajectory of
period 4
(c) at QE(QMS), Qz(i)] there are equal to two periodic trajectories of

period 9.

Theorem 3. The Lebesgue measure of the set J is equal to zero, i.e.
MJ)=0
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