УДК: 633.511;631.542.4.

Убайдуллаева Мадаминжона Муминжоновича,

PhD., доцент кафедры "Технологии и оборудование легкой промышленности" Ферганского государственного технического университета.

Эргашева Нодирбека Юлдашалиевича,

PhD., Заместитель директора Ферганской научно-опытной станции Научно-исследовательского института селекции, семеноводства и агротехнологий выращивания хлопка.

ВЛИЯНИЕ ИЗУЧАЕМЫХ ДЕФОЛИАНТОВ НА ХИМИЧЕСКИЙ СОСТАВ СЕМЯН ХЛОПЧАТНИКА

Аннотация: В данной статье, по результатам научных исследований, в 1-м опыте, проведенном в течение многих лет, у сортов хлопчатника С-6775 и С-8290 Энто-Дефол был равен 0,100; Среди норм 0,150 и 0,200 л/га относительно высокие показатели были получены под влиянием его нормы 0,150 л/га, выход ядра составил 56,3%, общий азот - 1,78%, белок - 0,60% и белок - 1,10%. Эти показатели в свою очередь превышали контроль соответственно на 0,8%, 0,17; 0,5 и 0,12% по сравнению с оптимальной нормой $(0,200\ \text{п/га})$ в 1-м сроке - 0,2%; 0,11; $0,1\ \text{и}\ 0,10\%$ соответственно. Таким образом, при применении дефолиантов при раскрытии коробочек на 50-60% синтез белкового азота в семенах увеличивается, в результате раскрытии **у**величивается его количество, при 30-40% наблюдается относительно хорошая спелость семян, наблюдается относительно низкий синтез белка под влиянием дефолианта.

Ключевые слова: хлопчатник, семена, вес семян, химический состав, варианты, общая площадь поля, химические вещества, результаты.

INFLUENCE OF THE STUDIED DEFOLIANTS ON THE CHEMICAL COMPOSITION OF COTTON SEEDS

Ubaydullaev Madaminjon Mominjonovich,

doctor of Philosophy in Agriculture associate professor, Associate Professor of the Department of "Technology and Equipment of Light Industry" of Fergana State Technical University.

Ergashev Nodirbek Yuldashaliyevich,

doctor of Philosophy in Agriculture

Deputy Director of the Fergana Research Station of the Research Institute of Cotton Breeding, Seed Production and Agrotechnologies.

Abstract: In this article, based on the results of scientific research, in the 1st experiment conducted over many years, it was found that in the C-6775 and C-

8290 cotton varieties, Ento-Defol was equal to 0.100; Among the 0.150 and 0.200 l/ha rates, relatively high indicators were obtained under the influence of its 0.150 l/ha rate, with a kernel yield of 56.3%, total nitrogen of 1.78%, protein of 0.60%, and protein of 1.10%. These indicators, in turn, exceeded the control by 0.8%, 0.17; 0.5 and 0.12% compared to the optimal rate (0.200 l/ha) in the 1st stage - 0.2%; 0.11; 0.1 and 0.10%, respectively. Thus, when defoliants are used at 50-60% boll opening, protein nitrogen synthesis in the seeds increases, resulting in an increase in its quantity, at 30-40% boll opening, relatively good seed maturity is observed, and relatively low protein synthesis is observed under the influence of the defoliant.

Keywords: cotton, seeds, seed weight, chemical composition, variants, total field area, chemical substances, results.

I. Введение

Для проведения качественной дефолиации на любых возделываемых растениях хлопчатника, прежде всего, важное значение имеет количество растений на площади посева хлопчатника и степень их густоты. Также одной из актуальных задач на сегодняшний день является изучение влияния применяемого дефолианта не только на урожайность хлопка, но и на химический состав семян в составе хлопка-сырца.

Причина в том, что значительное улучшение качественных показателей хлопкового волокна под влиянием применяемых дефолиантов научно доказано многими учеными отрасли, и здесь следует отметить, что если получить качественное волокно и получить качественные семена, то намеченная цель будет полностью достигнута. Ведь если показатели качества и химического состава семян положительны, доля продуктов, получаемых в процессе переработки, также даст хорошие результаты.

II. Обзор литературы

По результатам своего исследования Ш.Тешаев пришел к следующему выводу. В результате дефолиации в листьях происходит перераспределение питательных веществ. В результате коробочки усваивают достаточное количество питательных веществ, семена полностью формируются и обеспечивают увеличение количества ядра в семенах (Ш. Тешаев и др.,).

По мнению М.Мухаммаджонова и А.Зокирова, температура воздуха играет важную роль в проведении дефолиации. Температура в пределах 18-21°C считается умеренной. При суточной температуре 14-15°C снижается опадение листьев, а при температуре выше 21°C норму дефолианта необходимо снизить на 10% (М.Мухаммаджонов и др.,).

Следуя рекомендациям по качественному проведению дефолиации хлопчатника, при проведении дефолиации хлопчатника и начале уборки

через 12-15 дней достигнуто раскрытие 85-90% коробочек, в результате чего основная часть урожая реализуется первым сортам (Ш. Тешабаев и др.,).

III. Методология

Исходя из вышеуказанных актуальных задач, в 2018-2022 годах наши исследования по теме проводились в условиях лугово-сазовых, тяжелосуглинистых по механическому составу, слабозасоленных почв научно-опытной станции Научно-исследовательского института селекции, семеноводства и агротехнологии выращивания хлопка, расположенного в Кувинском районе Ферганской области, с глубиной залегания грунтовых вод 1,6-1,8 метра (Убайдуллаев и др., 2024).

Научные исследования проводились на основе пособий "Методика полевых опытов с хлопчатником", "Методические указания по испытанию дефолиантов", "Методы определения свойств хлопкового волокна" и "Методы проведения полевых опытов", принятых в УзНИИХ, а также полученные данные были проанализированы математически и статистически на основе программы Microsoft Excel по методу Б.А.Доспехова "Методика полевого опыта".

IV. Анализ и результаты

опыте, проведенном В 2018-2022 годах, данные ПО эффективности влияния дефолиантов химический состав на хлопчатника сортов С-6775 и С-8290 представлены на диаграмме 1, в контрольном варианте (1) хлопчатника сорта С-8290 при раскрытии 30-40% коробочек выход ядра семян составил 55,4%, общий азот - 1,52%, белок -0,64%, а азот, входящий в состав белка (далее - "белок"), составил 0,88%.

Следует отметить, что это количество составляет 57,8% от общего количества белкового азота. Следовательно, и в контроле в результате естественного синтеза эта часть общего азота вошла в состав белка. Теперь, если мы посмотрим, как протекает процесс при использовании Жидкого ХМД в норме 8,0 л/га, то в этом случае 1,51% общего азота входит в состав белкового азота на 0,89%, что составляет 58,9% от общего белкового азота. Таким образом, большая часть азота, входящего в состав растения, превратилась в органическое вещество, но еще 41,1% осталось в растении в минеральном состоянии.

Наша цель - максимально увеличить количество белкового азота, что требует оптимального применения всех агротехнических мероприятий.

1-диаграмма. Влияние дефолиантов на химические показатели качества семян, 2020 г., опыт No1

Энто-Дефола 0,100; Относительно оптимальные показатели между нормами 0,150 и 0,200 л/га были получены относительно выше нормы 0,200 л/га, выход ядра составил 56,1%, общий азот - 1,67%, белок - 0,67% и содержание белка - 1,60, что составило 0,7%; 0,15; 0,3 и 0,12% соответственно. Кроме того, под влиянием жидкого ХМД-8,0 л/га - 1,1%; 0,16; 0,05 и 0,11% соответственно. В этом варианте 59,8% общего азота уже вошло в состав белка, что на 2,0% выше, чем в контроле.


Следовательно, наблюдается ускорение синтеза белка под влиянием дефолиантов.

В контрольных вариантах (17-24) с раскрытием коробочек 50-60% выход ядра семян составил 55,5%, общего азота - 1,51%, белок - 0,63% и белок - 0,88%, что на 0,1; 0,1;0,1 и 0,0% соответственно.

В проведенных исследованиях (2018-2020) во 2-м опыте в условиях 2020 года при раскрытии 30-40% коробочек хлопчатника сорта С-8290 выход ядра по сравнению с контролем (1-6 вар) составил 55,0%, общий азот - 1,50%, белок - 0,63% и белок - 0,87%, а показатели параллельного варианта в 1-м опыте соответственно составили 0,4; 0,02; 0,01 и 0,01% или были почти равны. При использовании в качестве эталона Супер жидкий ХМД-8,0 л/га эти показатели составили 35,6; 1,40; 0,51 и 0,89%, что на 0,6; 0,10; 0,12 и 0,02 соответствен.

При применении в качестве эталона Хим-экстра нормой 0,200 л/га выход ядра составил 55,2; общий азот 1,64; безбелковый азот 0,67 и белок 0,97% по сравнению с контролем 0,2; 0,14; При применении Хим-экстра в

норме 0,150 л/га+Этифон 1,0 л/га выход ядра составил 56,1%; общий азот - 1,68; белок - 0,68 и белок - 1,00%, что на 1,1%, 0,18; 0,05; и 0,15%, а эталонного Хим-экстра - 0,200 л/га на 0,4; 0,4; 0,1 и 0,02% соответственно. При раскрытии 50-60% коробочек этого сорта (C-8290) в контрольных вариантах (13-18) выход ядра составил 54,5; общий азот - 1,52; белок - 0,63 и белок - 0,88%, что составило 0,5%, 0,02; 0,0 и 0,10% соответственно.

2-диаграмма. Влияние дефолиантов на химические показатели качества семян, 2020 г., опыт No2

При применении супержидкого ХМД нормой 8,0 л/га эти показатели соответственно составили 54,2; 1,50; 0,61 и 0,89%, а содержание белкового азота увеличилось на 0,01% соответственно. При использовании в качестве эталона Хим-экстра нормой 0,200 л/га выход ядра составил 55,1; общий азот - 1,60; белок - 0,64 и содержание белка - 0,96%, наблюдалось увеличение содержания белкового азота на 0,10% от контроля и на 0,09% от воздействия Супер жидкий ХМД-8,0 л/га.

В этот период раскрытия коробочек (2) были получены относительно высокие данные от норм Хим-экстра 0,100 л/га+Этифон 1,5 л/га, выход ядра составил 56,4; общий азот 1,68; белок 0,70 и белок 0,98%, от эталонного Хим-экстра 0,200 л/га соответственно 1,3%, 0,06; 0,08 и 0,02 5 соответственно. У сорта хлопчатника Наманган-77 при раскрытии коробочек 30-40, 50-60% в

контрольном варианте (7) выход ядра семян составил 54,1; общий азот - 1,53; белок - 0,68 и белок - 0,85%, при этом 55,5% от общего (1,53%) азота вошло в состав белка, в то время как у сорта C-8290 в тот же период (1-й вариант) этот показатель составил 58,0%.

V. Выводы и предложения

Следовательно, относительно высокие показатели были получены при применении Хим-экстра нормой $0{,}100$ л/га + Этифон $1{,}5$ л/га, выход ядра составил $56{,}0\%$, общий азот - $1{,}69\%$, белок - $0{,}75$ и белок - $0{,}94\%$, что соответственно составило $1{,}2\%$, $0{,}21$; $0{,}9$ и $0{,}08\%$ соответственно. Если сравнить показатель этого варианта с оптимальным вариантом в $1{-}$ м периоде, то общий белковый азот на самом деле составил $57{,}8$ и $58{,}6\%$.

VI. Список литературы

- 1. Sh. Teshaev, Ubaydullayev, M., & Kurbanova, U. (2023). THE INFLUENCE OF DEFOLIANTS ON THE TECHNOLOGICAL QUALITY INDICATORS AND CHEMICAL COMPOSITION OF SEED. *Science and innovation*, 2(D4), 26-30.
- 2. М.Мухаммаджонов, Убайдуллаев, М. М., & Саетбековна, Q. У. (2023). ДЕФОЛИАЦИЯ ЎТКАЗИШ УЧУН ДАЛАЛАРНИ ТАНЛАШ ВА ТАЙЁРЛАШ. *Journal of Science-Innovative Research in Uzbekistan*, *1*(9), 322-328.
- 4. Sh. Teshabaev, Moʻminjonovich, U. M., & Saetbekovna, Q. U. (2023). EFFECT OF DEFOLIANTS ON COTTON WEIGHT. Journal of Science-Innovative Research in Uzbekistan, 1(9), 316-321.
- 3. Ubaydullayev, M. M. (2022). YANGI DEFOLIANTLAR HOSILDORLIK GAROVI. Архив наусhных исследований, 2(1).
- 4.Mo'minjonovich, U. M. (2022). Effectiveness Of Defoliants. Eurasian Research Bulletin, 8, 9-12.
- 5.Mominjonovich, U. M., & Ogli, M. I. V. (2022). STUDY AND ANALYSIS OF TECHNOLOGICAL PROCESSES OF COTTON DRYING IN A CLUSTER SYSTEM. International Journal of Advance Scientific Research, 2(11), 6-10.
- 6. Ubaydullaev, M. M., & UT, T. (2022). DETERMINATION OF APPROPRIATE NORMS AND TERMS OF DEFOLIANTS. American Journal Of Applied Science And Technology, 2(05), 18-22.
- 7. Ubaydullaev, M. M., & Makhmudova, G. O. (2022). MEDIUM FIBER S-8290 AND S-6775 COTTON AGROTECHNICS OF SOWING VARIETIES. European International Journal of Multidisciplinary Research and Management Studies, 2(05), 49-54.
- 8. Ubaydullaev, M. M., & Komilov, J. N. (2022). EFFECT OF DEFOLIANTS FOR MEDIUM FIBER COTTON. International Journal of Advance Scientific Research, 2(05), 1-5.

- 9. Ubaydullaev, M. M., & Mahmutaliyev, I. V. (2022). EFFECTIVENESS OF FOREIGN AND LOCAL DEFOLIANTS ON THE OPENING OF CUPS. International Journal of Advance Scientific Research, 2(05), 6-12.
- 10. Ubaydullaev, M. M., & Sultonov, S. T. (2022). DEFOLIATION IS AN IMPORTANT MEASURE. European International Journal of Multidisciplinary Research and Management Studies, 2(05), 44-48.
- 11. Ubaydullaev, M. M., & Nishonov, I. A. (2022). The Benefits of Defoliation. Eurasian Journal of Engineering and Technology, 6, 102-105.
- 12.Ubaydullayev Madaminjon Mo'minjon o'g'li, & Ma'rufjonov Abdurahmon Mo'sinjon o'g'li. (2022). BIOLOGICAL EFFICIENCY OF FOREIGN AND LOCAL DEFOLIANTS. "science and innovation" international scientific journal, 1(2). https://doi.org/10.5281/zenodo.6569808
- 13. Ubaydullayev, M. M. (2021). G 'o 'zada defoliatsiya o 'tkazishning maqbul me'yor va muddatlari. Monografiya. -Corresponding standards and terms of defliation of cotton. Monograph. -. Соответствууищие нормы и сроки дефолиации хлопка. Монография. Zenodo.