Одилова Гулноза Махсудовна.

Преподаватель

Кафедра микробиологии, вирусологии и иммунологии

Самаркандский медицинский университет

ГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ УСТОЙЧИВОСТИ К АНТИБИОТИКАМ У ЕСТЕСТВЕННОРЕЗИСТЕНТНЫХ ШИГЕЛЛ ЗОННЕ

Резюме. В работе представлены результаты одной из важнейших проблем на современном этапе, развитие антибиотикорезистентности микроорганизма к антибактериальным препаратам, которые сегодня широко используются при их лечении. Целью работы явилось определить у шигелл Зонне Р-эписомные факторы контролирующий антибиотико -устойчивости и фенотипическое проявление. Генетические механизмы лекарственной устойчивости бактерий определяли путем скрещивания шигелл с полимаркированным реципиентом E.coli W-677Ф, чувствительным ко всем использованным препаратам.

Ключевые слова. Шигелла, антибиотики, E.coli, чуствителность, тетрациклин.

Odilova Gulnoza Maxsudovna.

Teacher

Department of Microbiology, Virology and Immunology
Samarkand Medical University

GENETIC MECHANISMS OF ANTIBIOTIC RESISTANCE IN NATURALLY RESISTANT SHIGELLA SONNE

Resume. The paper presents the results of one of the most important problems at the present stage, the development of antibiotic resistance of a microorganism to antibacterial drugs, which are widely used in their treatment today. The aim of the work was to determine the P-episome factor controlling antibiotic resistance and

phenotypic manifestation in Shigella Sonne. The genetic mechanisms of drug resistance of bacteria were determined by crossing shigella with a poly-labeled E.coli recipient W-677F, sensitive to all drugs used.

Keywords. Shigella, antibiotics, E.coli, sensitivity, tetracycline.

Ввдение. Кишечные инфекции продолжают занимать одно из ведущих мест в инфекционной патологии человека [1]. Одной из важнейших проблем практической помощи на современном этапе является развитие антибиотикорезистентности шигелл к антибактериальным препаратам, которые сегодня широко используются при их лечении [2,3].

Одним из основных факторов развития устойчивости является необоснованное использование антимикробных препаратов, которые избирательно оказывают эволюционное давление на микроорганизмы [4,5]. Рост и распространение устойчивых к антибактериальным препаратам патогенов связаны с серьезными биологическими рисками [6,7]. Активность существующих антибиотиков и их использование в определенной клинической практике указывают на негативную тенденцию. [8,].

В ранее выполненных нами исследованиях было показано, что устойчивость к антибиотикам у шигелл Зонне контролируется Р-эписомным фактором [9], в то время как резистентность к стрептомицину, искусственно сформированная у этих же штаммов, контролировалась хромосомными генами [10].

Целью работы явилось определить у шигелл Зонне Р-эписомные фактор контролирующий антибиотикоустойчивости и фенотипическое проявление.

Материалы и методы. В работе использовали 45 штаммов антибиотикорезистентных шигелл Зонне, выделенных от больных острой бактериальной дизентерией. Устойчивость к антибиотикам определяли методом серийных на простых плотных и жидких питательных средах, содержащих разные концентрации антибиотиков. Генетические механизмы лекарственной устойчивости бактерий определяли путем скрещивания шигелл с полимаркированным реципиентом $E.coli\ W-677\Phi$, чувствительным ко всем использованным

препаратам. Конъюгацию проводили по общепринятой методике. Взаимодействие эписомных и хромосомных генов, контролирующих тетрациклинорезистентность изучали путем передачи Р-фактора от *E.coli К-12* к двум штаммам шигелл Зонне, имеющим хромосомном обусловленную тетрациклинорезистентность.

Результаты и их обсуждение. В результате опытов по определению чувствительности к антибиотикам был установлено, что из 45 штаммов шигелл Зонне 42 были устойчивы к стрептомицину, тетрациклину и ципринолу, один штамм резистентность только к стрептомицину и два к тетрациклину.

При скрещивании 45 штаммов антибиотикорезистентных шигелл Зонне с $E.coli\ W$ -677 Φ было установлено, что 13 штаммов имели хромосомно обусловленную резистентность: 11- к стрептомицину и 2 штамма к тетрациклину, 32 штамма обладали эписомной устойчивостью: 21 к стрептомицину, ципринолу и тетрациклину и 11 штаммов к тетрациклину и ципринолу.

В последующих опытах к штаммам шигелл Зонне № 30 и № 143, хромосомнообусловленную тетрациклинорезистентность, соответственно, к 125 ЕД/мл и 50 ЕД/мл, от *E.coli K-12* был передан Р-фактор, контролирующий устойчивость к 50 ЕД/ мл тетрациклина, 100 ЕД/мл- цефазолина, 1000 ЕД/мл ципрофлоксацина и 100 ЕД/мл стрептомицина. Наличие гена тетрациклинорезистентности у реципиентных штаммов не влияло на частоту передачи Р-эписомного фактора. В результате передача факторов резистентности штамм № 30, ранее устойчивый только к 125 ЕД/мл тетрациклина, приобрел резистентность к 500 ЕД/мл тетрациклина, 100 ЕД/мл стрептомицина, 250 ЕД/мл ципринола, 100 цефазолина и 1000 ЕД/мл ципрофлоксацина. Штамм № 143 после получения Р-эписомного фактора от *E.coli K-12* повысил резистентность к тетрациклину от 50 ЕД/мл до 250 ЕД/мл. Уровни проявления резистентности к стрептомицину, ципринолу, цефазолину и ципрофлоксацину у рекомбинантного варианта штамма № 143 были такими же, что и у донора *E.coli K-12*. Повышение тетрациклинорезистентности не

сопровождалось изменениями питательных потребностей и биохимических свойств полимаркированного реципиента $E.coli\ W-677\Phi$.

Выводы. Возрастание резистентности к тетрациклину обусловлено взаимодействием эписомных генов и хромосомных детерминант, контролирующих тетрациклиноустойчивость у шигелл Зонне. Это явление имеет определенное практическое значение, что Р-фактор контролирует, как правило низкие уровни устойчивости, которые, вероятно можно преодолеть при лечении дизентерии. Но в кишечнике человека штаммы шигелл Зонне с низкими уровнями резистентности к тетрациклину, получив от кишечных палочек Р-фактор, контролирующий также низкие уровни тетрациклиноустойчивости, могут повысить резистентность к указанному антибиотику в 4-5 раз. Такое возрастание тетрациклин устойчивости может затруднить лечение бактериальной дизентерии.

Литература.

- Юсупов М. и др. Иммунный статус детей с коли инфекцией, вызванной гемолитическими эшерихиями до и после лечения бифидумбактерином и колибактерином //Журнал биомедицины и практики. 2021. Т. 1. №. 4. С. 164-168.
- Шайкулов Х. Ш. Антибиотикочувствительность гемолитических Е. coli, выделенных от детей больных эшерихиозом //Молодой ученый.—2023. — 2023. — Т. 4. — №. 451. — С. 489-491.
- Isrofilovna M. N., Qizi O. B. Q., Qizi S. M. R. ICHAK
 INFEKTSIYALARINING PATOGENEZI VA DIAGNOSTIKASIDA
 ALLERGIYANING ROLI //Talqin va tadqiqotlar ilmiy-uslubiy jurnali. 2023. –
 T. 1. №. 17. C. 252-256.
- Одилова Г. М. РОЛЬ АЛЛЕРГИИ В ПАТОГЕНЕЗЕ И ДИАГНОСТИКЕ КИШЕЧНЫХ ИНФЕКЦИЙ БАКТЕРИАЛЬНОЙ ЭТИОЛОГИИ //Innova. 2023. Т. 9. №. 1.

- 5. Даминов Ж. Н. и др. Сравнительное Изучение Биологических Свойств Стафилококков, Выделенных От Здоровых Носителей И При Различных Клинических Формах Инфекций //Central Asian Journal of Medical and Natural Science. − 2022. − Т. 3. − №. 3. − С. 148-150.
- 6. Юсупов, М., Шайкулов, Х., & Жамалова, Ф. (2023). Сравнительные аспекты патогенных эшерихий у детей с острыми кишечными заболеваниях и здоровых детей, чувствительность патогенных эшерихий к антибактериальным препаратам. Журнал биомедицины и практики, 1(4), 160–163. https://doi.org/10.26739/2181-9300-2021-4-23https://doi.org/10.26739/2181-

https://doi.org/10.26739/2181-9300-2021-4-23https://doi.org/10.26739/2181-9300-2021-4-23

- 7. Хужакулов Даврон Абдихакимович Особенности течения пищевых токсикоинфекций // Педиатр. 2017. №S. URL: https://cyberleninka.ru/article/n/osobennosti-techeniya-pischevyhtoksikoinfektsiy
- 8. Abdikhakimovich K. D. ANTIMICROBIAL SUBSTANCES OF LACTIC BACTERIA AND PRACTICAL ASPECTS OF THEIR USE //ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ. 2023. Т. 33. №. 1. С. 32-37.
- 9. Одилова Г. М., Исокулова М. М. ХАРАКТЕРИСТИКА ПОКАЗАТЕЛЕЙ ИММУНИТЕТА И ФАКТОРОВ НЕСПЕЦИФИЧЕСКОЙ ЗАЩИТЫ У ДЕТЕЙ РАННЕГО ВОЗРАСТА //INTERNATIONAL JOURNAL OF RECENTLY SCIENTIFIC RESEARCHER'S THEORY. 2024. Т. 2. №. 4. С. 86-89.
- 10.Болтаев К.С., Одилова Г.М. ВЗАИМОДЕЙСТВИИ R-ЭПИСОМНЫХ ФАКТОРОВ С ХРОМОСОМНЫМИ ГЕНАМИ АНТИБИОТИКОУСТОЙЧИВОСТИ У КИШЕЧНЫХ ПАЛОЧЕК И ШИГЕЛЛ ЗОННЕ // Экономика и социум. 2024. №2-1 (117). URL: https://cyberleninka.ru/article/n/vzaimodeystvii-r-episomnyh-faktorov-s-

