Салохиддинов Ф.А. преподаватель кафедры

«Технологические машины и оборудования» Каршинский государственный технические

университет

ВЫБОР МАТЕРИАЛОВ ОБОРУДОВАНИЯ ОЧИСТКЕ ПРИРОДНОГО ГАЗА

Аннотация: В статье рассматриваются критические аспекты выбора материалов для оборудования, используемого в установках очистки природного газа, подвергающегося воздействию кислых компонентов, таких как сероводород (H₂S), углекислый газ (CO₂) и органические сернистые соединения (меркаптаны).

Ключевые слова: сероводород, углекислый газ, хлориды и меркаптаны, углеродистые и аустенитные стали, никелевые суперсплавы.

Salokhiddinov F.A.

Lecturer of the Department
"Technological Machines and Equipment"
Karshi State Technical University

SELECTION OF MATERIALS FOR NATURAL GAS CLEANING EQUIPMENT

Annotation: This paper discusses critical aspects of material selection for equipment used in natural gas treatment plants exposed to acidic components such as hydrogen sulfide (H₂S), carbon dioxide (CO₂) and organic sulfur compounds (mercaptans).

Key words: hydrogen sulfide, carbon dioxide, chlorides and mercaptans, carbon and austenitic steels, nickel superalloys

Очистка природного газа кислых компонентов является otнеотъемлемой частью технологической схемы на предприятиях нефтегазовой отрасли. Используемое оборудование постоянно подвергается воздействию агрессивных сред, вызывающих коррозионное разрушение, снижение механической прочности и преждевременные Наиболее опасными компонентами являются сероводород, отказы. углекислый газ, хлориды и меркаптаны. В таких условиях к материалам предъявляются особые требования по коррозионной стойкости, прочности и термоустойчивости.

Сероводород (H₂S) способствует проникновению атомарного водорода в структуру материала, ЧТО приводит К сульфидному растрескиванию под напряжением (SSC) и водородному охрупчиванию (НЕ). Углекислый газ (СО2), в сочетании с влагой, образует угольную общее ускоряющую истончение стенок оборудования. Меркаптаны и органические кислоты усугубляют коррозионные процессы, особенно в зоне сварных соединений и внутренних напряжений.

Оборудование для очистки природного газа часто подвергается воздействию агрессивных компонентов, таких как H₂S, CO₂, хлориды и органические кислоты. Стандартные материалы, включая углеродистые и аустенитные стали, в таких условиях быстро теряют прочность и коррозионную стойкость. В связи с этим никелевые суперсплавы, в частности Inconel 625, стали широко использоваться в критических участках технологических установок.

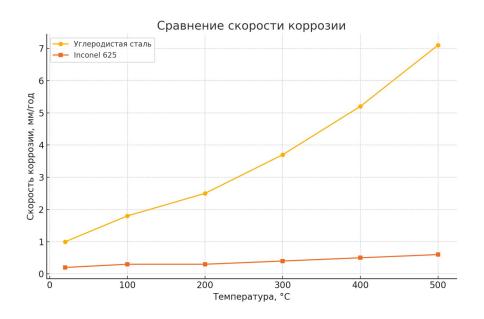
Ниже приведены химический состав и свойства материала Inconel 625; Основные легирующие элементы: Ni (58% мин), Cr (20–23%), Mo (8–10%), Nb + Ta (3.15–4.15%). Сплав отличается высокой стойкостью к межкристаллитной и точечной коррозии, предел прочности достигает 827 МПа, предел текучести — около 414 МПа, при температурной устойчивости до 980 °C.

Области применения материала Inconel 625 в газовой промышленности:

- Внутренние облицовки колонн аминовой очистки и десорберов
- Теплообменники в зонах высокого давления и температуры
- Трубопроводы для H₂S-содержащего газа
- Компоненты компрессоров и насосов в контакте с кислой средой

Механизм коррозионного разрушения, включая сульфидное растрескивание под напряжением (SSC), водородное растрескивание (HIC) и коррозию под напряжением (SCC). Представлен сравнительный анализ различных материалов — от углеродистых сталей до никелевых суперсплавов.

Таблица №1. Сравнительные показателей свойств материалов


Показатель	Inconel 625	316L	Дуплекс 2205
Предел прочности (МПа)	827	530	620
Устойчивость к H ₂ S	Отличная	Средняя	Высокая
Темп. предел (°C)	980	550	600

PREN (стойкость к точечной	≥ 50	24–28	35–40
коррозии)			

На газоперерабатывающем заводе в Западной Сибири оборудование колонны регенерации амина из стали 316L показало признаки точечной коррозии уже через 2 года эксплуатации. После замены облицовки на Inconel 625 проблемы коррозии были полностью устранены, и колонна работает более 7 лет без признаков деградации.

Таблица №2. Сравнительный анализ применяемых материалов

Материал	SSC- стойкость	СО₂- коррозия	НІС- стойкость	Экономичность
Углеродистая сталь (X65)	Низкая	Низкая	Низкая	Высокая
316L	Средняя	Средняя	Низкая	Средняя
Дуплекс 2205	Высокая	Высокая	Средняя	Средняя
Inconel 625	Отличная	Отличная	Отличная	Низкая

2020 году на одной ИЗ газоочистных установок зафиксированы множественные сквозные коррозионные повреждения в зоне нижнего коллектора абсорбера. Материал – нержавеющая сталь 304L. Исследование показало наличие напряжений в сварных швах и следов хлоридной SCC. После реконструкции колонны применением внутреннего покрытия на основе сплава Hastelloy удалось значительно увеличить межремонтный интервал.

Ниже предложены рекомендации по выбору материалов для повышения надежности и увеличения срока службы оборудования;

- Использовать дуплексные стали и CRAs в зонах высокой концентрации H₂S.
 - Применять внутренние покрытия и футеровки в крупных сосудах.
 - Обязательно соблюдать стандарты NACE MR0175/ISO 15156.
- Проводить регулярный контроль состояния (UT, ЭМП, визуальный осмотр).
- Избегать чрезмерного упрочнения сварных швов постобработка обязательна.

Inconel 625 представляет собой надёжный материал для применения в условиях агрессивной газовой среды. Благодаря превосходной стойкости к коррозии, растрескиванию и термической стабильности, сплав успешно используется в критических компонентах оборудования очистки природного газа, обеспечивая безопасность и долговечность систем.

Хотя стоимость сплава Inconel 625 значительно выше традиционных сталей, его применение оправдано в зонах, где возможны коррозионные разрушения и аварии. Снижение частоты ремонтов и увеличение срока службы компенсируют первоначальные затраты, особенно в труднодоступных и ответственных элементах оборудования.

Выбор материалов для газоочистных установок должен основываться на глубоком анализе условий эксплуатации и потенциала коррозионных рисков. Современные материалы, такие как дуплексные стали и никелевые сплавы, при правильном применении обеспечивают высокий уровень надежности и долговечности даже в наиболее агрессивных средах.

Использованные источники:

- 1. ГОСТ Р 50.05.06-2018. Сталь. Метод испытания на стойкость к сульфидному растрескиванию.
- 2. ISO 15156-1:2015. Petroleum and natural gas industries Materials for use in H₂S-containing environments.
 - 3. Реви Р., Улиг Г. Контроль и защита от коррозии. М.: Мир, 2008.
- 4. Song G., Atrens A. "Corrosion behavior of materials in sourenvironments." Corrosion Science, 2004.
- 5. Laycock N., Newman R. "Pitting and SCC of stainless steels." Corrosion Science, 1997.