УДК: 633.16:631.8

Яркулова З.Р., доцент

Бухарский государственный университет

ВЛИЯНИЕ СРОКОВ ПОСЕВА НА ФОТОСИНТЕТИЧЕСКИЙ ПОТЕНЦИАЛ СОРТОВ ОЗИМОГО ЯЧМЕНЯ

Аннотация. В этом работе изучены рост, развитие, фотосинтетический потенциал, фотосинтетическая продуктивность, урожайность, структура урожая, содержание питательных элементов озимого ячменя, выращенного в условиях орошаемых светлых серозёмных почв Кашкадарьинской области.

Ключевые слова: озимый ячмень, сроки посева, минеральное удобрение, норма, варианты, сорт, урожайность, жизнеспособность.

Yarkulova Z.R., Associate Professor

Bukhara State University

INFLUENCE OF SOWING DATES ON PHOTOSYNTHETIC POTENTIAL OF WINTER BARLEY VARIETIES

Abstract. In this work growth, development, photosynthetic potential, photosynthetic productivity, yield, yield structure, nutrient elements content of winter barley grown in conditions of irrigated light sulfur soils of Kashkadarya province are studied.

Key words: winter barley, sowing dates, mineral fertilizer, norm, variants, variety, yield, viability.

Введение

Страны мира, выращивающие зерновые культуры, повышают урожайность и качество зерна за счёт применения передовых методов селекции ячменя, посева и агротехнологии, в частности, сроков и норм посева, системы внесения удобрений, сроков и норм орошения. Повышение урожайности и качества зерновых культур, в том числе сортов

ячменя, в целях дальнейшего укрепления продовольственной безопасности — одна из важнейших задач современного зерноводства. Цель исследования заключается в определении оптимальных сроков посева и норм внесения минеральных удобрений, обеспечивающих получение наиболее качественного урожая зерна с низкой себестоимостью из интенсивных сортов озимого ячменя, выращиваемого на орошаемых землях в условиях Кашкадарьинской области.

Анализы и результаты

Основные показатели ценоза, как и продуктивность, рассчитываются на 1 м² или 1 гектар. Поверхность листьев также исчисляется в тысячах м²/га. Помимо этого, также используется индекс листовой поверхности. Фотосинтетический потенциал (ФП) зависит от площади поверхности листьев и продолжительности периода их активности. Фотосинтетический потенциал определяли экспериментально между фазами развития. В наших исследованиях в условиях Кашкадарьинской области сорт озимого ячменя Мавлоно в зависимости от сроков посева и норм внесения удобрений на орошаемых землях производит ФП от 1,155 до 2,207, сорт дуварак Болгали - от 1,67 до 2,273 млн. м²-день/га.

В наших исследованиях поверхность листа определяли в стадиях всходы-кущение, кущение-выход в трубку, выход в трубку-колошение, колошение-молочная спелость, молочная спелость-восковая спелость. У сорта Мавлоно, посаженного 1 октября, в период всходов и кущения площадь листьев на 1 га изменялась от 17000 м²/га до 27000 м²/га в зависимости от нормы внесения удобрений. Установлено, что с увеличением минеральной подкормки увеличивалась поверхность листьев на единицу площади, этот показатель изменялся с 16 м²/га до 30 м²/га у сорта Мавлоно. Поверхность самых высоких листьев у сорта Мавлоно, посаженного 15 октября, увеличилась с 19 м² до 32 м² в зависимости от нормы внесения удобрений, а у сорта Болгали с 18000 м²/га до 34000 м²/га.

Аналогичная тенденция наблюдалась у сорта Болгали. Посев семян 1 и 15 ноября по сравнению с 1 и 15 октября привёл к уменьшению площади листовой поверхности. Такая закономерность наблюдалась у обоих сортов в фазы кущения-выхода в трубку, выхода в трубку-колошения, колошениямолочной спелости, молочной спелости-восковой спелости. вегетационный период наибольшая площадь листовой поверхности приходилась на период выхода в трубку-колошения при всех сроках посева и вариантах норм внесения удобрений. Поверхность листа увеличивалась от периода всходов к периоду кущения, выхода в трубкуколошения. Закономерность редукции листовой поверхности наблюдалась в межфазный период колошения-молочной спелости, молочной спелостивосковой спелости. Эта закономерность встречалась у обоих сортов. В период выхода в трубку-колошения наибольшая листовая поверхность у посевов, высаженных 15 октября, изменялась с 34 м^2 /га до 58 м^2 /га в варианте без удобрений и с 33 m^2 /га до 62 m^2 /га в варианте без удобрений у сорта Болгали.

Таким образом, максимальную листовую поверхность на 1 га в условиях Кашкадарьинской области формируют озимые сорта ячменя Мавлоно и дуварак Болгали при посеве 15 октября, и у сортов Мавлоно и Болгали она составляет — 58 м²/га и 62 м²/га на 1 га соответственно при варианте Фон+N₁₈₀. К стадии молочно-восковой спелости активно работающая ассимиляционная поверхность у обоих сортов резко уменьшилась. Минеральные удобрения привели к продлению активности листьев. Для получения высокой урожайности в поле необходимо создать достаточный фотосинтетический потенциал (ФП). Повышение ФП в пределах одного сорта основано на увеличении листовой поверхности и её максимального показателя.

В наших опытах у посевов, высаженных 15 октября, озимые сорта Мавлоно и дуварак Болгали формировали самый высокий ФП между фазами всходов и кущения, причём у сорта Мавлоно этот показатель составлял от 0,154 до 0,224, а у сорта Болгали от 0,126 до 0,238. млн. м²-сутки/га. Сроки посева в начале 1.Х и в конце 1.ХІ, 15.ХІ привели к снижению ФП. В следующую фазу развития — между кущением и выходом в трубку, такая же закономерность наблюдалась и у сорта Мавлоно. Однако по сравнению с кущением за предыдущий период наблюдалось увеличение ФП в 2-3 раза по всем вариантам соответственно.

Рекомендации и выводы

Установлено, что высота растений ячменя уменьшалась с задержкой срока посева, устойчивость к полеганию повышалась, с повышением нормы внесения удобрений увеличивалась, а устойчивость к полеганию снижалась. Фотосинтетический потенциал (ФП) озимого сорта ячменя Мавлоно составляет от 1,155 до 2,207 млн. м²-сут/га на орошаемых землях в зависимости от сроков посева и норм внесения удобрений, сорта дуварак Болгали - от 1,67 до 2,273 млн. м²-сут/га. При посеве в период 15.Х вегетационного периода ФП изменился с 1,464 млн. до 2,207 м²-сут/га у сорта Мавлоно и с 1,426 до 2,273 млн. м²-сут/га у сорта Болгали соответственно. Если посев раньше или позднее оптимального для посева срока - 15.Х. приводил к снижению ФП озимых сортов Мавлоно и дуварак Болгали, то увеличение азотных удобрений с 60 до 180/га обеспечивало увеличение этого показателя.

Использованная литература

- 1. Ничипорович А.А. Фотосинтетическая деятельность растений в посевах. –М: 1961. 135 с.
- 2. Борищук Р.В., Лавренко С.О. Эффективность использования ФАР растениями ячменя озимого в зависимости от способов обработки

- почвы и доз азотных удобрений // Апробация. 2013. № 3 (6). -C. 26-28.
- 3. Яркулова З.Р., Халилов Н.Х. Влияние нормы посева и дозы минеральных удобрений на урожайность ячменя осеннего посева при орошении// «Вестник» Мичуринского государственного аграрного университета, г. Мичуринск, Россия, 2018, №2, С. 95-99
- 4. Яркулова З., Кодиров А. (2020) Влияние сроков посева и норм минеральных удобрений на выживаемость сортов озимого ячменя// Сборник публикаций научного журнала "Chronos" «Естественные и технические науки в современном мире» Выпуск 2(29): М: Научный журнал "Chronos", С. 15-18
- 5. Yarkulova Z., Khalilov N. (2019) Influence of Seeding Norms and Mineral Fertilizer Rate on the yield of Winter Barley// International Journal of Recent Technology and Engineering (IJRTE). ISSN: 2277-3878, Volume-8, Issue-3S, October. P. 508-510
- 6. Yarkulova Z. (2019) Influence of timing of crops and norms of mineral fertilizers for winter barley yield// Asian Journal of Science and Technology, India, Vol. 10, Issue, 05, May, pp. 9669-9670
- 7. Yarkulova Z., Qodirov A. (2021) Optimization of Sowing Dates and Seeding Rates with Adaptive Control of The Technology of Cultivation of Winter Barley Varieties Mavlono// Indian Journal of Agriculture Engineering (IJAE), Volume-1 Issue-1, May.
- 8. Yarkulova Z., Qodirov A. Crop yield of winter barley grain with the application of various growing technologies// "GreenEnergy 2024" E3S Web of Conferences **587**, 04020 (2024). https://doi.org/10.1051/e3sconf/202458704020